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Abstract—Sports officials around the world are facing chal-
lenges due to the unfair nature of doping practices used by
unscrupulous athletes to improve their performance. This prac-
tice includes blood transfusion, intake of anabolic steroids or
even hormone-based drugs like erythropoietin to increase their
strength, endurance, and ultimately their performance. While
direct detection and identification of erythropoietin in blood
samples of athletes have proven an effective means to uncover
doping, not all the cases are easily detectable, and some analyses
are too costly to be carried out on every sample. This leads to a
need to develop an indirect method for detecting erythropoietin
in blood samples based on different blood biomarkers. In this
paper, we presented a comparison of different machine learning
algorithms combined with statistical analysis approaches to
identify the presence of erythropoietin drug in blood samples
collected at both sea level and moderate altitude. The results
presented indicate that ensemble methods like random forest
and XGboost algorithms may provide an effective tool to aid
anti-doping organisations in most effectively distributing scarce
resources. Implementation of these methods on the samples from
elite athletes may both enhance the deterrence effect of anti-
doping as well as increases the likelihood of catching doped
athletes.

Index Terms—Erythropoietin, Blood Doping, Machine Learn-
ing, Drug Abuse, rhEPO, Sports

I. INTRODUCTION

Artificial Intelligence (AI) has shown potential improvement

in the sports industry, whether to identify players’ unique tal-

ents, detect previous injuries, or even assist decision-making.

Automated Sports Journalism is a good example where AI is

being used in guiding sports journalism [Galily 2018]. How-

ever, the applications are not only limited to the development

of sports but can also be used to ensure fairness in sports by

athletes.

Athletes have a desire to increase their physical performance

to obtain better results which leads some of them to seek

alternative or even prohibited methods. Therefore, doping

practices in sports have been around for several decades. Blood

doping can be performed by mainly three methods: intake

of erythropoietin, synthetic oxygen carriers to enhance the

oxygen transport capacity and blood transfusion [Jelkmann

2016]. Erythropoietin (EPO) is a peptide hormone naturally

secreted by the kidney to stimulate the production of red blood

cells in the blood. It increases the blood capacity to transport

oxygen which results in increasing of body endurance [Jelk-

mann 2016]. One way to naturally increase the production of

EPO is through altitude training. The body compensates for

the reduced oxygen concentration at high altitude by releas-

ing EPO. However, several synthetically produced substances

can stimulate endogenous EPO production, like recombinant

human erythropoietin (rhEPO). In collaboration with its stake-

holders, the World Anti-Doping Agency (WADA) oversees

the list of substances that are prohibited in sport [WADA

2021]. One such substance is rhEPO, a recombinant protein

that stimulates erythropoiesis which increases the oxygen-

carrying capacity of the blood [John et al. 2012]. While the

laboratory-based method exists for the detection of rhEPO, it is

too expensive and time-consuming to be applied to all blood

samples [Martin at al. 2021]. Moreover, the sensitivity and

specificity of the method are also a concern in some regards.

These limitations led us to investigate whether an AI-based

approach like machine learning algorithms could be applied

to laboratory results already being generated in anti-doping in

order to better direct rhEPO analysis. Since rhEPO intake pro-

duces characteristic changes in haematological parameters, it

is possible to authenticate athletes based on indirect indicators

of blood doping.

In this paper, we start by reviewing the literature on indirect

detection methods with an emphasis on statistical methods.

Then, we present the procedure of the clinical experiment we

conducted to collect the data and analyse it by using different

statistical methods. We found the potential biomarkers of

rhEPO, which were used to perform machine learning analysis

to identify the presence of rhEPO in blood samples. Finally,

we show the performance of the trained algorithms and discuss

the results with possible future research.
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II. RELATED WORK

While the earliest attempts of indirect methods of detect-

ing blood doping included so-called ”no start rules”, where

athletes with blood parameters outside of population-based

limits were prohibited from competing, these were prone to an

unacceptable number of false positives due to athletes with nat-

urally elevated blood parameters. Therefore, approaches were

soon taken to personalise decision limits to the individual’s

own biomarker values [Sharpe et al. 2006], [Malcovati et al.

2003].

[Manfredini et al. 2011] proposed the statistical-based

score parameter calculated from different blood parameters

by considering the shift of the value from their baseline

values. [Sharpe et al. 2006] developed a statistical approach to

estimate athlete’s baseline values from just one prior sample.

[Parisotto et al. 2001] showed in their work that how different

statistical models (ON and OFF-model) based on the potential

parameters behaved in their study.

There are also some studies performed using machine

learning algorithms in anti-doping analysis. [Kelly et al. 2019]

compared the performance of different machine learning algo-

rithms to identify the risk of doping among 791 UFC athletes

based on their performance data and reported their best results

as a sensitivity of 44%. [Sottas et al. 2006] introduced the Ab-

normal Blood Profile Score (ABPS), which is an indirect test

based on the statistical classification of indirect biomarkers.

The calculation of ABPS is based on Support Vector Machine

and Naive Bayes algorithm that achieved a sensitivity of 45%

at 100% specificity. Therefore, this is the current state-of-the-

art (SOTA) method which is used as a baseline in this paper.

Since the direct detection methods like IEF-PAGE analysis

[Martin at al. 2021] are expensive and time consuming to

perform and therefore, there is a necessity for an indirect

method. The existing work on indirect methods is limited

to some applications in anti-doping analysis (except blood

doping) using statistical analysis and some machine learning

algorithms. This shows why there is a need to explore data-

driven approaches in blood doping analysis. In this paper,

we performed a study to compare different machine learning

algorithms combined with statistical analysis approaches to

identify the presence of rhEPO in blood samples to uncover

blood doping.

III. CLINICAL EXPERIMENT

A. Goal Definition

The goal of this study is to develop an indirect method

that can detect the doping practices performed by athletes. In

other words, a model that can detect the presence of doping

substances rhEPO in the blood sample given by the athlete

i.e., the model should be able to differentiate between a clean

and suspicious blood sample and triggers in the case of a sus-

picious sample. So, we performed a data-driven approach, i.e.,

conducted clinical experiment, performed exploratory analysis,

applied different machine learning algorithms and compared

their performance to develop such a model. In addition, a

comprehensive analysis of blood samples was conducted to

understand the underlying principles of different biomarkers.

B. Data collection

In reality, it is not easy to gather such health-related data

of elite athletes because of data availability, privacy and other

issues. Therefore, we set up such an experiment to mimic the

real-life situation and analysed the collected data from the

participants in this study. We performed a clinical experiment

for 12 weeks with two arms: ”sea-level” (34 participants) and

”altitude” (39 participants). The unequal experimental design

between the sea-level and altitude arms was a cost-benefit

decision based on economical reasons. The time span of 12

weeks was divided into three periods: baseline (week 1-4),

intervention (week 5-8) and follow-up (week 8-12). In the

experiment, the baseline and follow-up periods of both the

arms were performed at sea-level, whereas the four weeks of

intervention period were performed at either sea-level or a

moderate altitude of 2300m. The choice to have a four-week

intervention period is based on current practice in the athletic

population, where altitude training camps are rarely longer

than four weeks.

None of the participants was given any doping substituent in

the baseline and follow-up periods, whereas in the intervention

period, 11 injections were given to all the participants after

every other day. 25 participants were given rhEPO injections,

and 9 participants were given placebo injections in the sea-

level arm. In the altitude arm, 12 participants were injected

with rhEPO, and 27 were given placebo injections. Every

participant was monitored regularly, and the blood sample of

each participant was collected every week. So, we collected

864 blood samples in total, and the detail of data statistics is

summarised in Table I.

TABLE I
NUMBER OF BLOOD SAMPLES COLLECTED AT SEA-LEVEL AND ALTITUDE

Blood samples Sea-level Altitude (=2300m)

Controlled samples (Placebo) 609 107

rhEPO samples 100 48

Total samples 709 155

For each blood sample, the haematological profile is quan-

tified. The haematological profile consists of a set of haemato-

logical parameters that show significant changes in their values

due to rhEPO intake. These haematological parameters are

haemoglobin concentration (HB), haematocrit (HCT), reticu-

locytes percentage (RET%), reticulocytes count (RET#), retic-

ulocytes haemoglobin (RET-HB), mean corpuscular volume

(MCV), mean corpuscular haemoglobin mass (MCH), mean

corpuscular haemoglobin concentration (MCHC), red blood

cell count (RBC), red blood cell distribution width - stan-

dard deviation (RDW-SD), red blood cell distribution width

- coefficient of variation (RDW-CV), white blood cell count

(WBC), immature reticulocyte fraction (IRF), low fluorescence

reticulocyte fraction (LFR), medium fluorescence reticulocyte
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fraction (MFR), high fluorescence reticulocyte fraction (HFR)

[Parisotto et al. 2001], [Zorzoli 2011]. In addition, we have

the OFF-HR score (OFF-HR) which tells us the relationship

of reticulocytes to haemoglobin and can be calculated using

the below expression [Gore et al. 2003]:

OFF −HR = HB(g/L)− 60 ∗
√
RET%

The importance of OFF-HR parameter can be understood by

an example. Let us consider a scenario where an athlete is

doping with small doses of rhEPO. This might not result in

a significant increase in haemoglobin, but reticulocytes will

likely react significantly, causing OFF-score to be affected.

Similarly, an athlete could also take large doses of rhEPO. If

this athlete successfully keeps haemoglobin constant through a

plasma increase, it would go undetected. However, infusing a

blood bag will certainly decrease reticulocytes to the extent

that would trigger the OFF-HR. So, OFF-HR can indicate

the acceleration or deceleration of erythropoiesis process, and

therefore, it is an important parameter to consider.

C. Data preprocessing

We found that the data contained missing values for some

haematological parameters in a few samples. This could be

mainly due to the measurement error when collecting and

analysing the blood samples in the laboratory. Since we have

less number of samples in the data, we decided to impute

the values instead of discarding that sample. We used a

median imputation strategy where these missing values for the

parameter were imputed by the median value of that parameter.

The median value of that parameter is calculated by taking all

the samples of that participant from the respective arm. This

helps to avoid any kind of bias caused due to the values of

other participants.

IV. EXPLORATORY ANALYSIS

A. Multivariate Analysis

We performed the multivariate analysis to analyse different

haematological parameters and the relationship between them.

For that, all the parameters were plotted against each other.

In some distributions, we observed certain regions where the

majority of the controlled samples lie and form a cluster. Fig.

1 shows three such distributions of RET# vs RET%, HFR

vs RET% and RET# vs RDW-SD and regions are marked

with a black box. These regions show the baseline distribution

of these haematological parameters of the normal human

population.

B. Cut-based Method

Based on the multivariate analysis, we formed certain

threshold cuts on some parameters to develop a cut-based

strategy to distinguish controlled samples from rhEPO sam-

ples. Fig. 2 shows the developed thresholds for the samples

collected at both sea-level and altitude, and the corresponding

plots showing the proportion of samples satisfying these

thresholds. It can be observed from the plots that the propor-

tion of samples that do not satisfy the developed thresholds

Fig. 1. Distributions of controlled and rhEPO samples collected at sea-level
showing the relationship between RET# vs RET%, HFR vs RET% and RET#
vs RDW-SD parameters.

contain 93% controlled samples for sea-level and 94% for

altitude. Moreover, all the samples that satisfied the threshold

cuts for altitude are the rhEPO samples. This shows the

efficiency and the significance of these developed cuts on the

parameters.

Fig. 2. Developed threshold cuts on haematological parameters for both sea-
level and altitude arms and their corresponding plots for the proportion of
samples that satisfy these cuts.

C. Statistical Analysis

In addition to exploring each parameter and examining their

distribution, we observed some potential strong indicators.

Some parameters are susceptible to rhEPO intake and show

a significant change in their values, whereas the difference

is negligible in other parameters. To quantify, we performed

2 sample Kolmogorov-Smirnov test (K-S test) to identify

the best haematological parameters, which show a significant

change in their values on rhEPO intake.

The K-S test [Dimitrova et al. 2020] is a standard statistical

test for deciding whether a dataset is consistent with another

dataset. The maximum difference between the cumulative

distribution function of the two population distributions (con-

trolled Fa(x) and rhEPO Fb(x)) is calculated by using::

Da,b = sup|Fa(x)− Fb(x)|
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The null distribution of this statistic is calculated under the

null hypothesis that the two distributions are drawn from the

same parent distribution. The null hypothesis is rejected at

level α if:

Da,b >

√
− ln

α

2
.
1 + b

a

2b

where a and b are the number of controlled and rhEPO

samples respectively. We chose α = 0.001 to determine the

best indicators at confidence level of 99.99%. Fig. 3 shows

the distribution of WBC and RET# for controlled (blue) and

rhEPO (red) samples at sea-level. WBC has a p-value of 0.56,

which shows that there is no significant change observed in

the values of this parameter because of rhEPO intake. On the

other hand, the p-value of RET# (0.0001) indicates that it is

potentially a strong indicator to observe the effect of rhEPO.

Fig. 3. Distribution of WBC and RET# parameters for controlled (blue) and
rhEPO (red) samples.

The skewed distributions of the haematological parameters

are statistically described by means of the median, first (IQ1

= 0.25), and third (IQ3 = 0.75) quartile based upon the data.

The inter-quartile range between the first and third quartile

includes 50% of the samples. Table II and Table III show the

detailed descriptive statistics of the haematological parameters

of controlled and rhEPO samples, respectively.

D. Variable Selection

Based on the K-S test, we selected a set of potential

biomarkers, i.e., haematological parameters that shows a sig-

nificant change in their values due to the rhEPO intake. The

potential biomarkers are RET%, RET#, IFR, LFR, MFR,

HFR, RDW-SD and OFF-HR for sea-level and RET#, RET%,

RDW-SD, RDW-CV, MCHC and HCT for altitude. Fig. 4

shows the distinguishing power (independent of the model) of

all the potential biomarkers for sea-level and altitude. Since

machine learning algorithms are sensitive to the choice of the

parameters used to train the model, this step is needed. These

potential biomarkers are used to perform the machine learning

analysis.

Fig. 4. Potential biomarkers (at 99.99% CL) from the K-S test at sea-level
and altitude.

V. MACHINE LEARNING STUDIES

A. Model Selection

In this section, we describe the machine learning studies

conducted to perform the classification task. In this analysis,

we trained different machine learning algorithms and evaluated

their performance on data. The considered algorithms are:

• Logistic Regression (LR) [Cox 1958]

• Naive Bayes (NB) [Zhang 2004]

• Support Vector Machine (SVM) [Hearst et al. 1998]

• K-Nearest Neighbour (KNN) [Mucherino at al. 2009]

• Decision Tree (DT) [Wu at al. 2008]

• Random Forest (RF) [Preiman 2001]

• eXtreme Gradient Boosting - XGBoost (XGB) [Chen et

al. 2016]

Table IV shows the different hyperparameters values se-

lected to train each model. These values are considered after

performing the optimisation step.

B. Training

We randomly partitioned the data samples such that 80%

of the data was used for training and 20% for testing the

algorithm. The data contains the potential biomarkers which

are selected after performing the K-S test. However, prior to

training, parameters were rescaled and normalised to ensure

each parameter had a mean of 0 and a standard deviation of

1 using the SCIKIT-LEARN package [Pedregosa et al. 2011].

We implemented all the algorithms using the SCIKIT-LEARN

package [Pedregosa et al. 2011], except the XGBoost al-

gorithm, which was implemented using XGBOOST package

[Chen et al. 2016]. Over-fitting is a major issue in training

the model because it reduces the ability of the algorithm to

predict new samples accurately. The best-fitting model for a
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TABLE II
DESCRIPTIVE STATISTICS OF HAEMATOLOGICAL PARAMETERS FOR RHEPO AND CONTROLLED SAMPLES AT SEA-LEVEL INCLUDING THE p-VALUE FROM

THE K-S TEST.

rhEPO (n=100) controlled samples (n=609) p-value

Parameter mean±std. min IQ1 median IQ3 max mean±std. min IQ1 median IQ3 max

HB 14.5±1.2 11.4 13.6 14.4 15.4 17.0 14.2±1.1 11.5 13.4 14.3 15.0 17.0 4.1e-02

HCT 42.3±3.3 32.8 40.2 42.1 44.5 51.2 41.2±3.0 33.2 39.3 41.2 43.2 50.1 7.1e-03

RET# 0.1±0.0 0.0 0.1 0.1 0.1 0.1 0.0±0.0 0.0 0.0 0.0 0.1 0.1 1.3e-15

RET% 1.4±0.4 0.5 1.1 1.4 1.7 2.7 0.9±0.3 0.3 0.7 0.9 1.1 2.2 1.3e-15

RET-HB 33.5±1.7 29.4 32.5 33.6 34.5 36.9 33.5±1.8 27.4 32.5 33.5 34.7 38.0 9.7e-01

MCV 89.5±2.9 84.2 87.5 88.9 91.8 96.0 88.9±3.2 81.0 86.7 88.6 91.0 98.1 9.2e-02

MCH 30.6±1.1 28.3 29.6 30.6 31.2 32.8 30.7±1.4 26.7 29.7 30.7 31.7 35.1 7.1e-01

MCHC 34.2±0.8 32.2 33.6 34.1 34.6 36.5 34.5±1.1 32.0 33.7 34.4 35.0 38.9 3.9e-03

RBC 4.7±0.4 3.5 4.5 4.7 4.9 5.7 4.6±0.4 3.6 4.4 4.7 4.9 5.7 9.7e-02

RDW-SD 42.5±2.6 37.7 40.4 42.4 44.4 48.4 41.7±2.6 35.2 40.0 41.5 43.1 54.1 9.2e-04

RDW-CV 12.9±0.6 11.6 12.4 12.9 13.2 14.4 12.7±0.8 11.6 12.1 12.6 13.0 17.0 5.6e-04

WBC 5.6±1.4 3.1 4.6 5.4 6.3 11.1 5.8±1.6 3.0 4.7 5.6 6.7 14.8 5.6e-01

IRF 9.9±3.8 1.1 7.4 9.9 12.3 22.7 6.2±2.7 0.0 4.3 6.0 7.9 15.0 1.3e-15

LFR 90.1±3.8 77.3 87.7 90.1 92.6 98.9 93.7±2.7 85.0 92.1 94.0 95.6 99.3 1.3e-15

MFR 8.6±3.0 1.1 6.7 8.7 10.6 19.0 5.7±2.3 0.7 4.0 5.5 7.1 13.4 1.3e-15

HFR 1.4±0.9 0.0 0.7 1.3 1.8 5.7 0.6±0.5 0.0 0.2 0.5 0.9 3.0 2.6e-12

OFF-HR 74.3±15.7 36.2 63.7 73.0 85.8 111.6 85.0±14.3 44.8 75.5 85.4 94.8 119.1 2.6e-09

TABLE III
DESCRIPTIVE STATISTICS OF HAEMATOLOGICAL PARAMETERS FOR RHEPO AND CONTROLLED SAMPLES AT ALTITUDE INCLUDING THE p-VALUE FROM

THE K-S TEST.

rhEPO (n=48) controlled samples (n=107) p-value

Parameter mean±std. min IQ1 median IQ3 max mean±std. min IQ1 median IQ3 max

HB 15.1±1.4 12.2 13.6 15.3 16.0 17.6 14.5±1.1 11.9 13.6 14.6 15.5 16.8 3.9e-02

HCT 43.6±3.9 35.5 40.2 44.1 46.5 51.5 41.7±2.8 34.7 39.5 41.8 43.9 47.5 7.3e-04

RET# 0.1±0.0 0.0 0.1 0.1 0.1 0.1 0.1±0.0 0.0 0.1 0.1 0.1 0.1 1.9e-06

RET% 1.7±0.5 0.8 1.4 1.7 2.1 2.8 1.3±0.4 0.5 1.0 1.3 1.6 2.9 6.1e-05

RET-HB 34.7±1.8 30.3 33.6 34.7 35.7 37.7 34.6±1.8 28.4 33.8 34.8 35.8 38.0 9.1e-01

MCV 89.9±2.6 85.4 88.3 89.6 92.0 95.9 87.6±3.3 81.3 85.4 87.3 90.0 96.6 3.2e-02

MCH 31.1±0.9 29.6 30.1 31.1 31.8 32.7 30.5±1.4 27.0 30.0 30.7 31.5 33.1 3.7e-02

MCHC 34.6±0.9 33.3 34.1 34.4 34.7 37.7 34.9±0.9 33.0 34.2 34.9 35.4 37.4 3.4e-04

RBC 4.8±0.4 4.3 4.5 4.9 5.2 5.6 4.8±0.3 3.7 4.5 4.8 5.0 5.4 3.7e-02

RDW-SD 44.3±2.5 39.1 42.5 44.5 45.9 48.8 42.5±3.7 36.6 40.5 41.5 42.7 55.3 1.4e-07

RDW-CV 13.4±0.6 11.8 13.0 13.4 13.9 14.7 13.2±1.2 11.8 12.5 12.9 13.5 17.8 1.5e-04

WBC 7.1±2.3 4.0 5.2 6.7 8.5 14.5 6.4±1.9 3.7 5.0 6.2 7.5 12.8 3.6e-01

IRF 10.3±3.2 4.3 8.4 10.3 11.6 22.8 9.3±3.4 0.0 6.9 9.2 11.5 21.4 1.3e-01

LFR 88.9±3.5 77.2 87.2 89.8 91.1 94.4 91.0±3.0 82.9 88.8 90.9 93.3 97.8 1.5e-02

MFR 9.4±2.3 4.9 8.0 9.2 10.5 15.3 7.9±2.5 2.2 5.9 8.0 9.6 15.5 7.3e-03

HFR 1.7±1.5 0.1 0.9 1.3 1.8 7.5 1.1±0.6 0.0 0.6 1.0 1.6 2.8 2.9e-01

OFF-HR 72.6±18.6 31.9 61.2 73.8 85.2 107.8 77.1±15.5 25.7 68.7 76.1 85.6 111.7 2.9e-02
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TABLE IV
HYPERPARAMETERS VALUES OF DIFFERENT MACHINE LEARNING MODELS

Model Parameter value

Logistic Regression (LR) penalty = l2

max iter = 100

Naive Bayes (NB) kernel = gaussian

var smoothing = 1e-9

Support Vector Machine (SVM) kernel = rbf

degree = 3

max iter = -1

K-Nearest Neighbor (KNN) n neighbors = 5

power = euclidean distance

leaf size = 30

Decision Tree (DT) criterion = gini

min samples split = 2

max features = no. of features

Random Forest (RF) n estimators = 100

criterion = gini

min samples split = 2

bootstrap = True

XGBoost (XGB) objective = binary logistic

learning rate = 0.1

max depth = 5

alpha = 10

n estimators = 10

single dataset is very likely to be a worse fit for future data.

Since we have a comparatively small dataset for training, it

is a major concern in our analysis. Therefore, we performed

k-fold cross-validation method [Refaeilzadeh et al. 2009] to

train the algorithms where we chose k = 5. It is a resampling

procedure where we partitioned the training dataset into non-

overlapping 5 folds. Each of the folds is used as a held-back

validation set, whilst all other folds collectively are used as a

training dataset. So, a total of 5 models were trained for each

algorithm and evaluated on the 5 holdout validation datasets,

and the mean performance is reported. A schematic of training

and validation of the algorithm is shown in Fig. 5.

C. Optimisation

Each algorithm consists of a set of hyperparameters that can

be tuned to improve the training of the algorithm. Therefore,

we need to perform a coarse grid search for finding the best

combination of these hyperparameters. We used a hyperpa-

rameter optimisation framework to automate hyperparameter

search efficiently in large grid space and prune unpromising

trials for faster optimisation. We implemented it using the

OPTUNA package [Akiba et al. 2019] to improve the results

of the trained model on the validation dataset.

After the optimisation of the model is performed, we applied

the optimised trained model on the testing set to predict the

Fig. 5. Schematic of the data partition and the training of the algorithm
including k-fold validation step.

new unseen samples and evaluated the model’s performance

by calculating different evaluation metrics.

D. Evaluation

To evaluate the predictive performance of the algorithms,

a set of metrics is calculated by applying the trained model

to a testing set and generating predictions. These predictions

are based on the probabilities, i.e., a sample is classified as

suspicious of blood doping case if the probability is greater

than 0.5. Measures used to evaluate the performance of each

model include accuracy, sensitivity, specificity, area under

ROC curve (AUC).

Since we have a highly imbalanced dataset, it is important

to assess both the classes (controlled and rhEPO) separately.

Therefore, we evaluated sensitivity which tells us the propor-

tion of correctly identified rhEPO samples, and specificity,

which measures the proportion of correctly identified con-

trolled samples.

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP

where TP and TN denote the number of samples classified

correctly by the algorithm as rhEPO and controlled, respec-

tively, while FN and FP denote the number of misclassified

rhEPO and controlled samples, respectively.

E. Results

We performed the evaluation of all the considered machine

learning algorithms using the training and testing set. These

algorithms use different approaches to predict the probability

of a blood sample to be either a controlled sample or contained

rhEPO. Since we performed the cross-validation method for

training all the models, Fig. 6 and Fig. 7 show the comparison

of training accuracy of all the models using the box plot for

the sea-level and altitude arm, respectively.

Table V and Table VI show the performance comparison

of all the models by calculating the evaluation metrics for

sea-level and altitude arms, respectively. We used the results

of the SOTA method [Sottas et al. 2006] as the baseline to

compare the performance of our models. Overall, the random

forest algorithm performs better performance compared to all

the other algorithms for both sea-level and altitude arms. It

198

Authorized licensed use limited to: Saarl Universitaets. Downloaded on October 13,2022 at 09:34:35 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Performance comparison of training accuracy of all the models for
sea-level arm.

Fig. 7. Performance comparison of training accuracy of all the models for
altitude arm.

achieves an accuracy of 94% and 97% on the testing set of

sea-level and altitude arms, respectively and 100% specificity

for both arms. Similarly, XGBoost also performed well with

an accuracy of 92% and 84% on the testing set of sea-level

and altitude arms, respectively and 100% specificity for sea-

level arm and slightly less of 96% specificity for the altitude

arm. Fig. 8 and Fig. 9 show the ROC curve of all the trained

models for sea-level and altitude arm, respectively.

Fig. 8. ROC curves for all the trained models for sea-level arm.

It is important that the model achieve the high specificity

Fig. 9. ROC curves for all the trained models for altitude arm.

value of ≥ 99% in anti-doping analysis because any value

of false-positive means the model misclassified the controlled

samples as a suspicious sample. In reality, if the model

triggers such kind of situation, it will end up with additional

laboratory testing of the blood sample, which affects the cost

and time resources of the authorities. Therefore, we look for

the sensitivity of the model at roughly around 99% specificity.

We observed that ensemble methods like random forest and

XGBoost outperforms the SOTA method, whereas model like

SVM could not achieve any value of sensitivity at high

specificity.

In general, we expected both RF and XGBoost to show

better performance than other algorithms, which is evident

from our results. This is because both ensemble algorithms

based on bagging and boosting consist of more than one

learning algorithm for decision making. Our results show that

the random forest algorithm could be used to improve the

indirect detection of rhEPO in blood samples.

VI. DISCUSSION

The objective of this analysis is to address a research

question on how data-driven approach can help anti-doping

analysis to improve the detection of blood doping in sports.

In the recent past, several studies have discussed the possible

application of machine learning, especially supervised learning

algorithms in anti-doping analysis. These studies are usually

conducted with the help of the data gathered in clinical

experiments on individual populations. In our analysis, we

conducted a study, which includes a step-by-step process from

collecting data to finding the in-sights of the data.

In this paper, we presented an indirect method to detect

the presence of rhEPO in blood samples. We conducted a

clinical experiment where 864 blood samples (given placebo

or rhEPO) were collected in two arms namely at sea-level and

a moderate altitude of 2300m. We combined both statistical

methods and machine learning algorithms to analyse the

blood samples. At the 99.99% confidence level threshold, we

found the potential biomarkers of rhEPO and used them for

the machine learning analysis. We trained different machine

learning algorithms on the blood samples and evaluated their
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TABLE V
PERFORMANCE COMPARISON OF ALGORITHMS WITH THE RESULTS FROM SOTA METHOD AT SEA-LEVEL. THE MEAN AND STANDARD DEVIATION

VALUES FROM THE CROSS-VALIDATION ARE REPORTED FOR THE TRAINING SET.

Metric SOTA LR NB SVM KNN DT RF XGB

Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

ACC - 0.90±0.0 0.90 0.88±0.1 0.87 0.86±0.0 0.85 0.87±0.1 0.89 0.85±0.1 0.85 0.90±0.0 0.94 0.90±0.1 0.92

SN 0.45 0.47±0.2 0.45 0.81±0.2 0.77 0.21±0.3 0.00 0.55±0.1 0.41 0.65±0.1 0.59 0.75±0.2 0.59 0.62±0.2 0.50

SP 1.00 0.95±0.1 0.98 0.86±0.1 0.89 0.79±0.2 1.00 0.95±0.0 0.97 0.78±0.2 0.89 0.92±0.1 1.00 0.95±0.0 1.00

AUC 0.84 0.90±0.0 0.89 0.89±0.0 0.88 0.85±0.1 0.90 0.91±0.1 0.86 0.81±0.1 0.74 0.89±0.1 0.94 0.85±0.1 0.91

TABLE VI
PERFORMANCE COMPARISON OF ALGORITHMS WITH THE RESULTS FROM SOTA METHOD AT ALTITUDE. THE MEAN AND STANDARD DEVIATION VALUES

FROM THE CROSS-VALIDATION ARE REPORTED FOR THE TRAINING SET.

Metric SOTA LR NB SVM KNN DT RF XGB

Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

ACC - 0.76±0.1 0.81 0.80±0.1 0.84 0.68±0.0 0.74 0.72±0.1 0.81 0.67±0.2 0.77 0.85±0.1 0.97 0.80±0.1 0.84

SN 0.45 0.37±0.3 0.50 0.83±0.2 0.75 0.11±0.2 0.00 0.67±0.1 0.75 0.63±0.2 0.75 0.82±0.2 0.88 0.71±0.2 0.50

SP 1.00 0.85±0.1 0.91 0.88±0.1 0.87 0.82±0.2 1.00 0.90±0.0 0.83 0.79±0.2 0.78 0.95±0.0 1.00 0.92±0.0 0.96

AUC 0.84 0.92±0.1 0.88 0.93±0.0 0.95 0.89±0.1 0.84 0.91±0.0 0.87 0.85±0.1 0.77 0.87±0.1 0.95 0.89±0.1 0.93

performance. Random forest and XGBoost algorithms showed

better results and outperformed the SOTA method. Our results

suggest that the ensemble methods are effective in mapping the

effect of rhEPO in haematological parameters. However, the

result is limited to the amount of data available for performing

this study. Improving data availability and data quality are

potential keys to further enhance the performance of the

algorithms. It also opens up the use of more sophisticated

non-linear algorithms like a neural network which often learns

better with more data. In addition, there are data augmen-

tation techniques like generative models that could possibly

help to increase the data statistics. Another factor that could

improve the result is by adding some domain knowledge of

the haematological parameters in addition to the statistical

results. Currently, the K-S test is used to select the potential

biomarkers, which is biased towards the data distribution. The

presence of outliers in the data could possibly impact the p-

values.

In general, AI-based algorithms have the potential to im-

prove the current indirect methods in sports by using the

insights from the data for better decision making. In this paper,

we showed how the application of a data-driven approach

offers a promising result and can significantly improve the

decision-making for the detection of drug-abused athletes in

sports. Therefore, our work provides a possible solution to

address the problem of blood doping in sports and contribute to

developing an indirect method for the detection of prohibited

substances.

A. Future Research

Deep learning algorithms like neural networks show po-

tential for additional investigation for finding the possible

application in anti-doping analysis. However, these algorithms

are data-hungry and require a large number of samples for

training. Gathering such an amount of data is very difficult

because of the associated time restraints and cost factors.

Therefore in future, using generative models to increase the

data statistics and then apply deep learning algorithms to

improve the results could be a potential approach.
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