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Abstract—Real-time Anomaly Detection is of great importance
in industrial applications in order to have high-quality production
and avoid downtime or failure of the system. In this paper, we
study the application of anomaly detection over the multivariate
data collected from Glass Production Industry. Our experiments
utilize and compare different Unsupervised multivariate time
series Anomaly Detection and Localization algorithms that have
already demonstrated significant results on the state-of-the-
art data sets. We propose a two-level multivariate anomaly
detection approach that not only detects anomalous events in
the production line but also categorize the different type of
anomalies based on statistical pattern recognition. Furthermore,
we localize the anomalous sensors by utilizing Explainable-Al
approaches to help better decision-making in glass production
monitoring. In this work, we propose an efficient pipeline for
Anomaly Detection, Categorization and Localization which the
experiments show promising results.

Index Terms—Anomaly Detection, Anomaly Categorization,
Statistical Pattern Recognition, Explainable AI, Glass Production,
Multivariate Time series, Unsupervised Learning.

I. INTRODUCTION

Anomaly Detection is a well-studied problem due to its wide
range of applications. The task of anomaly detection refers to
determining if a given data point fits the normal distribution;
a non-fitting data point is called an anomaly. An anomaly
may indicate various rare events such as production faults,
systems defects, systems intrusions, service bottlenecks, or
tissue degradation, which is therefore of primary focus in many
applications. Therefore, anomaly detection for the recognition
of rare sub-sequences in times series data is an important task
with a considerable spectrum of applications ranging from
industrial manufacturing processes to health care monitoring.

During any industrial process, a number of both wanted
abnormal behaviors like process changes and unwanted events,
including point anomalies, sensor defects, and corrosion-
related drift, would occur, each of which requires a different
measure on the part of the operator. However, a robust dis-
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Fig. 1. General overview of Unsupervised Multivariate Time Series Anomaly
Detection: a part of the data which is assumed as normal data is considered for
training and anomaly score is utilized for Anomaly Detection and monitoring
the system.

tinction between different types of changes or anomalies can
often only be derived from the interaction of different sensor
data.

With classic methods from the field of statistical process
control, however, only a subset of these phenomena can be de-
tected, which often leads to downtime or failure of the system.
Therefore, Early detection and differentiation of process drift
caused by corrosion, point anomalies, and failure of individual
sensors are required. Furthermore, these phenomena should be
separated from the desired process setting changes.

Defect formation/anomaly should be detected as promptly
as possible during the system run-time to intervene if neces-
sary and avoid loss of quality of the product or the spread of



the defect. It is also essential to know which area of the system
the anomaly occurs; therefore, embedding multi-sensors in the
whole system and localizing the anomalous sensors could be
helpful for proper decision-making by domain experts. One
of the challenges of anomaly detection in real-world scenarios
is the lack of labeled data or anomalies, which necessitates
the use of unsupervised or semi-supervised methods. For the
purpose of multivariate time series anomaly detection, usually,
the first part of the data would be considered normal data
and would be utilized for training the model. Afterward, the
test data would be fed to the model, and the reconstruction
error is assumed as an anomaly score for monitoring the data
and the system. The overview of training data splitting in
Unsupervised Multivariate Time Series Anomaly Detection is
depicted in 1. One of the drawbacks of such approaches is
that they use a simple threshold on anomaly score [9] and this
would lead to false positive alarms. There are some anomaly
patterns that are not severe anomalies in the system, and they
are representative of a special event in the system, like changes
in the setting.

While studying the use case of anomaly detection on glass
production, we learned level shift anomaly patterns in the
anomaly score are representative of changes in the settings
(non-critical anomaly) and should be distinguished among
other kinds of anomalies (critical anomaly), and system rec-
ommendations and alerts should be of different kinds. This
knowledge, besides the necessity of localization of anomalous
sensors in a real-time scenario, lead our experiments, and we
propose a pipeline to fulfill the challenges of this scenario.
This paper proposes an efficient pipeline for solving anomaly
detection, categorization, and localization in multivariate time-
series real-world data from the glass production industry
toward our domain expert’s objective. Our main contribution
can be summarized as follows:

o Comparison among different state-of-the-art unsupervised
anomaly detection algorithms to find the proper candidate
for the real-time scenario.

o A real-time anomaly indicator that aggregates the multi-
variate time series data to an anomaly score to provide
early planning of repairs and measures.

« More stability by distinguishing between critical and non-
critical anomalies by utilizing statistical pattern recogni-
tion on anomaly score.

« Rapid anomalous sensor localization and identification of
causes through explainable Al

o Distinguishing anomalies to provide recommendations
based on the type of anomaly: critical and non-critical
anomalies.

The remainder of the paper is organized as follows in Sect.
II, we outline the related work. The Method and Background
are explained in Sect. IIl. Experimental results are presented
in Sect. IV. And Sect. V concludes the paper.

II. RELATED WORK

As multivariate time series data is often very large, suf-
fers from noise, and displays complex and different patterns

upon each task, researchers have designed various specialized
algorithms for anomaly detection to tackle such anomalous
patterns. Over the years, the number and variety of these
algorithms have grown considerably, each originating from
various research areas such as deep learning, classical machine
learning, data mining, signal analysis, stochastic learning, and
statistics (regression and forecasting). Although deep learning
methods have been favored recently for their high ability
to generalize complex problem spaces, overall, they do not
display stark and unchallenged performance in every task, as
simple methods in cases nevertheless yield results almost as
good as that of more sophisticated ones.

One of the stochastic models applied for capturing the
relationship between multivariate time series for anomaly
detection is a Vector Autoregression (VAR) model. Being a
fast and easy-to-apply method, it’s been scrutinized for various
anomaly detection tasks. [15] constructed a multi-stage VAR
model for the operation of the powerplant on time-series
data from the combined cycle utility gas turbines, assuming
sparsity in the association among variables. [16] applied VAR
for dynamic fraud detection in graph spectral time series
data. In another work, [17] utilized the same method for a
continuous furnace activity in production to describe furnace
measurements’ dynamic behavior with the goal of identifying
possible failures sufficiently far in advance.

Autoencoders are a type of neural network that encode the
normal representation of the unlabeled data and reconstruct it
from the learned latent space. To that extent, it has effectively
been employed for various anomaly detection tasks to learn the
normal pattern of data and assess the likelihood of whether the
reconstruction of any given new data point from the learned
encoding conforms to the given data point. There has been
significant growth in the number of research works using
the autoencoder for anomaly detection of multivariate time
series data. Many different recurrent neural networks model
has been adapted to autoencoder setting to learn the temporal
dependencies in time series data. Among them, the Long
Short-Term Memory (LSTM) autoencoders are one of the most
applied methods for anomaly detection in multi-sensor time-
series signals [5], [7], [9], [13], [25]. Furthermore, there has
been a significant amount of work exploring the application
of LSTM autoencoder further for various anomaly detection
tasks, proposing more sophisticated structures such as LSTM-
based variational autoencoder [26], [27] and LSTM models
coupled with deep convolutional autoencoder to characterize
spatial dependence of time series data [6], [28] to deal with
industrial application, such as failure detection in water plants,
production equipment, smart manufacturing [13], Spacecraft
[25] and servers.

Some researchers have suggested unsupervised multivariate
anomaly detection methods based on Generative Adversarial
Networks (GANs) in the same autoencoder setting to deal
with increasingly dynamic and complex systems such as cyber-
physical systems [30], [31].

One of the drawbacks of conducting semi-supervised meth-
ods for unsupervised data is that they might train the model



with anomalous samples which contributes to false alarms in
some scenarios. To that extend, [14] proposed a self-supervised
method to capture the relationship between univariate time
series explicitly by addressing each as an individual feature
and cooperating with a graph attention network to learn the
complex interaction of time series in feature dimension as
well as learning their overall temporal dependency. [29] used
a similar method to learn graph relationships between features
and detect deviation from these patterns, while incorporating
sensor embedding.

However, one of the limitations of the aforementioned
existing methods is that they use a simple threshold or rolling-
threshold on anomaly score, and this would lead to false
positive alarms. There are some anomaly patterns that are not
critical anomalies in the system, and they are representative of
a special event in the system, like changes in the setting. Our
method differs from these, and we propose statistical pattern
recognition on aggregated anomaly scores from multivariate
data to distinguish critical and non-critical anomalies instead
of using only threshold.

III. METHOD AND BACKGROUND

In this section, we describe the details of our proposed
Multi-Sensor Anomaly Detection, Categorization and Local-
ization pipeline in an unsupervised multivariate setup. The
overview of the pipeline is shown in 2. In the first step, the
model is trained with normal data. Afterwards, test data would
be fed to the model and anomaly score is generated. Then the
anomalies based on their pattern would be categorized. After
finding the data points labeled faulty, we construct a wrapper
to integrate an autoencoder with saliency XAI methods to
calculate which sensors are related to the anomaly and how
much they are contributing. Having metric (sensor) attribution
values to anomalies, we provide meaningful interpretation to
localize the anomalous sensors. In the following sections, we
briefly discuss all the associated fields.

A. Anomaly Detection

For the purpose of anomaly detection in our use case, since
we had available knowledge from domain experts that we
could consider the first part of each run of the time series
data, we did experiments over the widely used category of
algorithms in application-based anomaly detection. Among
different algorithms, we did experiments over Vector Au-
toregression, LSTM Autoencoder, and OmniAnomaly. In the
following, we will introduce each of these algorithms, and we
will discuss the results in the experiments section.

1) Vector Autoregression: The VAR is a stochastic model
applied for capturing the relationship between multivariate
time series as they evolve over time. Being fast, flexible,
and easy to apply, it is one of the most applied methods for
describing the dynamic behavior of time series for forecasting.
VAR is an extension of univariate autoregressive models to
multivariate time series data. Similar to that of univariate
autoregressive, the VAR is modeled as a linear function of

previous values where each variable has an equation that
models its and other variables’ evolution over time (1)
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where ¢t = 1,...,T denotes the length of time series, ¥; € R
is vector of k temporal variables, p is a lag order value, A; €
R*** s a coefficient matrix which represents the relationship
between the time series and their lagged values, ¢, € R” is the
vector of zero-mean white noise. For example, for a bivariate
VAR model with p=2, the equation them has the form
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Notice that each equation includes the lagged values of exoge-
nous variables as well, making the VAR model a seemingly
unrelated regression model.

For the given formula (1), the input data is used to estimate
the coefficients A using multivariate least-squares estimation.
However, one of the main challenges is to determine the
lag order for the estimation. The choice of the lag order p
is determined by information criteria-based order selection.
To that extend, we first fit the VAR models with orders
p = 0,...,Pmaz to find p that minimizes the information
criteria. The overall model selection criteria have the form

1C () = | ()| + ex - (k. p) )

where X (p) = 771 Z;T:l &£, is the residual covariance
matrix, ¢y denotes the sequence indexed by T, ¢(k,p) is
a penalty term that penalises the large VAR models. In our
experiments, we employ Akaike (AIC) information criteria as
the main selection criteria (4).

~ 2
AIC (p) = n S (p)| + Zpk® @)
For foresting unseen multivariate time series, we use the
parameters of the VAR estimated by the multivariate least
squares. Then the h-step forecasts are obtained by the chain
rule of forecasts as

Y e =c+ AY conyr+ -+ AY ron_pr(S)

For aggregation, we first calculate the T-2 error between the
forecasted time series and the real-time series based on the
residual mean and variance of the initial estimation. Finally,
the forecast score is aggregated by

S(h) =W (h) W (h)~" (6)

where W (h) is the T-2 error score for the forecast series, &
denotes the residual covariance matrix of initial estimation.
Ultimately aggregated score of the multivariate time series
is used by the anomaly detection method for detecting the
anomalous time series.
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Fig. 2. Overview of the proposed pipeline for Unsupervised Multi-Sensor Anomaly Detection, Categorization and Localization in Glass Production.

2) LSTM Autoencoder: LSTM is an extension of recurrent
neural networks which enables information flow from previous
time steps to be used for the current step, allowing the model to
learn from previous information. An LSTM unit is composed
of a cell, input, output, and forget gates. The cell stores the
list of previous information and recognizes the values over
arbitrary time intervals, and gates control the propagation of
information in and out of the cell. LSTM Autoencoder (LSTM-
AE) is type of unsupervised neural network that learns how to
effectively reconstruct the given input data using LSTM layers,
thus capturing the possible dependence in time series variables.
LSTM-AE has a bottle-neck structure where the input z; is
first mapped to small latent space space z; through the series
of hidden layer with decreasing number of nodes in encoder
network, as shown in (7)

2 = fe (wewi + be) @)

where f. is an activation function for the encoder, w, is the
weight matrix, b, is bias.

Then the latent variable z; is transformed back to the
original input space x; in the decoder network through the
series of the hidden layer with the opposite behavior, as shown
in (8)

x; = fq (waz; + ba) ¥

where f; is an activation function for the decoder, wy is the
weight matrix, by is bias.

In our experiments, we train LSTM-AE for multivariate time
series using four hidden layers, where the number of nodes in
each layer is halved in the encoder network and doubled in
the decoder network. Moreover, mean squared error is utilized
as the main loss function to minimize the overall difference
between the real and reconstructed samples along time series
sequences. Later for the unseen data, reconstructed values are
aggregated into a reconstruction score by performing mean
absolute error.

A small overall reconstruction score would mean that the
input z; is constructed with firm certainty, and it can be
expected to follow the normal behavior of time series data.
On the other hand, a high reconstruction score would induce
that the observation might not follow the normal pattern of

time series, hence most likely being an anomaly. As in the
previous example, we use the same anomaly detection method
on the reconstruction score to make any prediction about the
anomalous state.

3) OmniAnomaly: OmniAnomaly [23] is a stochastic re-
current neural network designed to model temporal depen-
dencies in multivariate time series data. It incorporates Gated
Recurrent Unit (GRU) [18], Variational Autoencoder (VAE)
[19], and Normalizing Flows (NF) [20] to achieve robust
representation of time series in terms of both stochasticity and
temporal dependence of multivariate time series.

GRU is a variant of the gated recursive neural networks to
capture temporal dependence between multivariate observa-
tions. In addition to having a forget gate such as LSTM cells,
GRU has fewer parameters as it does not utilize an output
gate. Hence GRU is computationally less expensive compared
to LSTM. However, the overall structure of OmniAnomaly has
more parameters and requires more computational power than
a simple LSTM-AE.

VAE is a deep Variational Bayesian method to transfer the
high-dimensional input z; to a smaller latent space z;, then
the reconstruct z; from the latent space z;. Input x; at time ¢
is reconstructed by being sampled from posterior distribution
po (x4 | 2¢) and a prior pg (z;) by maximizing the likelihood
of reconstruction data.

po (1) = / po (22) po (1 | =) ©)

However, data likelihood py (z;) can not be directly com-
puted as it is intractable to compute pg (x; | z¢) for every z.
Intractable data likelihood also renders posterior density distri-
bution pg (z; | z¢) intractable in its turn, where py (2: | ) =
S po (x4 | 2¢) po (2¢) /o (). Therefore, in addition to de-
coder network modelling py (z; | z:), VAE uses an encoder
network g4 (z | x¢) to approximate the pg (z; | 1), where ¢
and 6 represent parameters of encoder and decoder networks,
respectively. With the aforementioned encoder and decoder
setting, data likelihood is formulated as

logpg (71) = E; [logpe (¢ | 2¢)] — D1 (49 (2 | 1) [| o (2t))
+ Drr (g (2 | 2¢) || po (2 | 741)) (10)



As Kullback-Leibler term Dg, (g (2t | 2¢) || po (2 | 21)) s
intractable and always greater than zero, log pg () is thus rep-
resented only by variational lower bound (ELBO) L(z¢, 6, ¢).

L(x1,0,¢) = B [logp (21 | 24)] = D (40 (2 | 24) [| po (21))
(1)

To that extend, VAE is trained with the objective of maximis-
ing the likelihood of lower bound

N
0%, " = argng%xZE(xt,G,qﬁ) (12)
i=1

Ultimately, the final equation (12) can be computed using
the Monte Carlo assumption [22].

The output of the encoder network is usually regarded
as diagonal Gaussian distribution. Therefore, usually, simple
approximations techniques are employed to estimate the poste-
rior ¢4 (2 | @) to allow for efficient reconstruction. However,
using simple approximation may have a significant impact
on the quality of the model because ¢, (z | ;) would not
always necessarily follow Gaussian distribution, thus suffering
from underfitting. For that, the planar NF method is applied
to transform ¢y (2 | z;) using invertible mapping function to
enable learning non-Gaussian posterior density g, (= | z¢).

The overall architecture of OmniAnomaly is composed of
decoder and encoder networks. Encoder network uses the
latent representation z;_p.; to reconstruct the input x;_p.; at
time ¢, where t — T' : t denotes the sequence of observation
from time ¢ — T to T'. The encoder network is optimized by
the second part of the variational lower bound to approximate
the ¢ that is close to prior. Input observation x; and the hidden
variable e;_; in GRU from the previous time step are passed
to GRU unit to generate e;. The hidden variable e; is crucial
for capturing temporal dependence in multivariate time series
data over time. Hence authors concatenate e; with z;_1 and
fed into dense layer to generate ¢, parameters (mean /,, and
standard deviation o,). Once ¢, parameters are created, the
output of encoder network z{ is sampled from Ny (pz,,02,1).
The output z) has diagonal Gaussian distribution. Hence, in
the last step, to learn non-Gaussian posterior distribution of
4o (2 | T1), ¢ is approximated by passing 2} through a chain
of k planar mapping transformations f*. The final output of
the encoder is the result of the planar mapping, z; = 2F.

The structure of the decoder network, which reconstruct x;
from z;, is similar to that of the encoder. The main difference
is that it uses Linear Gaussian State Space Model [21] to
capture dependence among the z-space variables (i.e., 6,). The
dependence is described as

2zt = O (Thze—1 +v¢) + &4 (13)

where Oy and T} are transition and observation matrices, v,
and ¢; are transition and observation noises. At the time t,
temporary dependent z; approximated earlier is later sent to
the decoder GRU cell along with the hidden variable d;_; of
the same cell to produce d;. Next, d; is directly passed to
dense layer to generate 6, parameters for the reconstruction.

The output of decoder network x; is then sampled from
No (pz,,02,1).

The reconstruction score or probability is denoted by con-
ditional log probability as

S(t) = log (po (x4 | ze—7:t))

The high S(¢) score indicates that the input z; is constructed
with high confidence, and it follows the normal behavior of
time series data. On the other hand, a small value of the re-
construction score would mean observation can not be created
with high certainty; it might not follow the normal pattern of
time series, hence being an anomaly. OmniAnomaly uses its
automatic threshold selection method to detect anomalies from
reconstruction scores. However, in our experiments, we only
use the aggregated reconstruction score. Instead of using the
same anomaly detection method proposed by the authors, we
use a different anomaly detection method on S(t) to detect
anomalies from the reconstruction score.

(14)

B. Anomaly Categorization

In reality, the nature of anomaly varies over different cases.
We can see different patterns of anomaly, and a single anomaly
detection method may not work universally for all anomaly
detection problems simply because they would differ in be-
havior (pattern). For example, in some cases, there are certain
spikes or a level shift in the data caused by parameter changes
in the sensory input. Although these shifts or spikes are not
due to any fault (rather due to changes in purposes), they
might be labeled as enormous by standard anomaly detection
algorithms. For example, in some cases, the normal behavior
of the target sensor would be constant upward increase, where
certain detectors would be more flexible to that, threshold
anomaly detection algorithms would suffer starting from the
point where increase exceeds the upper bound. Therefore,
choosing and combining detection algorithms are key to
building an effective detection module that can robustly detect
different types of anomalous occurrences. To this end, we used
Anomaly Detection Toolkit (ADTK) [24]. Anomaly Detection
Toolkit (ADTK) is a Python package for unsupervised/rule-
based time series anomaly detection.

1) Point Anomalies: Compares each time series value with
its previous values. It is used to detect positive changes in
the value. In [24], it is implemented as a transformer Dou-
ble Rolling Aggregate. Double Rolling Aggregate rolls two
sliding windows side-by-side along a time series, aggregates
using a selected operation, and tracks the difference of the
aggregated metrics between the two windows. This may help
track changes in statistical behavior in a time series [24].

2) Threshold Anomalies: Compares each time series value
with given thresholds. It always looks for values that lie below
of upper threshold point and above the lower threshold point.

3) Level-Shift Anomalies: By monitoring the difference be-
tween the median values in two adjacent sliding time periods,
Level-Shift Anomalies detect shifts in value level. It can be a
useful option if noisy outliers occur regularly because it is not
sensitive to sudden surges [24].



4) Volatility-Shift Anomalies: Tracks the difference be-
tween the standard deviations at two adjacent sliding time
periods to identify changes in the level of volatility. It’s
typically employed to find the rise in fluctuation amplitude’s
volatility [24].

C. Anomaly Explanation

Most state-of-the-art anomaly localization approaches either

depend on the anomaly detection pipeline (i.e., reconstruction
score) or describe the likelihood of feature contributions
through statistical tests. For example, one of the simple ways
to localize the anomalies would be to construct the localization
based on the individual reconstruction score of each metric
by declaring the metrics with the highest anomaly score as
the most anomalous metrics and so on. However, this setting
does not provide extensive insight as it suffers from the same
setbacks of not being able to benefit from the information
available on the remaining metrics. In the anomaly explanation
part, we use an saliency XAI method in multivariate time
series for anomaly localization. Thus here, we focus on a
method that can benefit from the information available at other
metrics and their integration.
Regarding anomaly Localization, there are some studies re-
lated to explainable anomaly detection by using Explainable-
Al approaches in the literature [1], [3]-[5] which focus
on additive feature-based Explainable Al that as the main
approach they experimented with Shapely values to explain
the feature importance. However, in [2], we did experiments
over different families of Saliency Explainable Al approaches
and utilized explainable Al for the application of multi-sensor
anomaly localization in time series data for the first time. We
show Saliceny Explainable Al anomaly localization method
outperforms the OmniAnomaly Localization [23] and also the
reconstruction error baseline. Accordingly, we used this idea
in our pipeline.

IV. EXPERIMENTS

We trained three different algorithms and compared the
running time to choose the best one for the real-time training
and detection in our pipeline. In table I, the running time
for each run of the data is presented. VAR and LSTM-AE
have the minimum training and testing time respectively. Since
real time anomaly detection while testing data is of great
importance, we choose LSTM-AE. In the categorization phase,
we differentiated among critical(point) and non-critical (level-
shift) anomalies. In the explanation phase, the anomalous
sensors were localized as a root cause of anomalies.

A. Data

The data set is collected from the sensory input of glass pro-
duction line. It contains process data from 8 production runs
at one plant. For each run, 31 measuring points are recorded;
the designations of the measuring points reflect the assignment
to individual areas that follow one another in the production
process. Part of embedded sensors could be observed in 3.
Each of the eight production runs contains 10,000 - 30,000

Combustion

Controlled
atmosphere

Raw
materials

Cutting
section

Float Bath Furnace

Fig. 3. Schematic diagram showing the float process for making sheet glass
from [32] and overview of partial embedded sensors naming (A1-D4). The
red sensors are anomalous sensors that localized by Explainable Al

chronologically ordered data records, depending on how long
the run lasted. The exact size of each run could be found in I.
At the beginning of each run, it is to be assumed that the plant
is in the "Normal state” and has no defect. Therefore, the first
part of data sets is ideally as few as possible, a maximum of
3-4000 can be used for training. Subsequently, we use the set
containing the first 3000 timesteps of the data as a training
set, timesteps between the first 3000th and 4000th samples
are used for the validation set, and the remaining part of the
data sets starting from the 4000th samples are used for the
experimental testing purposes.

B. Experiment Setting

In our experiments, based on running time in I, we utilize
LSTM autoencoder consisting of a two-layer encoder and
decoder as a baseline model. Training the model is unsuper-
vised and we considered the first part of the data as normal
data. Firstly, features are encoded and then the latent feature
representation is reversed in the same order in the decoder part
to reconstruct the initial data. The increase in reconstruction
error for anomalous data will lead us to detect anomalies.
During the preprocessing, the data is normalized by min-max
scaling, and then it is segmented into sequences through a
sliding window of length 50. Moreover, if any data is missing,
then the corresponding row is removed from the dataset. We
use the ADAM optimizer and stochastic gradient descent with
a learning rate of 10~2 with a mini-batch size of 64 to
train the model. We train the model with an early stopping
technique on the validation data back from 20% of the training.
Furthermore, to deal with the gradient overflow and prevent
the exploding gradients, we incorporate a gradient clipping
of norm with 5.0 as a limit. We compute feature (metric)
importance utilizing a saliency XAI method. Moreover, we
use the Mean Absolute Error Equation (MAE) as the wrapper
function rather than Mean Squared Error (MSE) to reduce the
effect of sudden sharp increases in the reconstruction error,
which might result from the noise in the data.

MAE — 21:1 lyi — i

n

5)

where y; is prediction, x; is true value, and n is the total
number of data points.



C. Results

The overall goal of this work is designing a pipeline to
detect anomalies in glass production line, localize the anomaly
root sensors and provide recommendations for cost-effective
maintenance. For doing so, we first scrutinized what anomaly
detection architecture is better suited both for quality anomaly
detection and explanation generation pipeline. We did that
considering the accuracy of anomaly detection, time cost
required to train the model, and the compatibility of the model
with a proper XAI method. Having analyzed these factors, we
decided to proceed with LASTM-Autoencoder which is fairly
accurate, considerably fast, and easily adaptable to the XAI
methods.

Later we aggregated the generated multivariate samples
from the LASTM-Autoencoder into univariate time series to
capture the interaction of the features in a single variable and
use it with a robust and adaptive anomaly detection score.
To distinguish different kinds of anomalies, in the next step,
we employed four different types of detector algorithms with
unique abilities. Furthermore, we demonstrated what kinds of
different anomaly patterns we have observed in the data and
how the suggested detectors can perform on them. The final
stage is Explanation Generation which creates the meaningful
localization for the found anomalous regions. In figure 4,
the result of anomaly detection over eight production runs is
demonstrated. The blue signal in plot is the anomaly score
(MAE); the level shift patterns as non-critical anomalies are
shown in yellow and point anomalies as critical anomalies in
red region. As the last step, anomalous sensors are localized
with saliency XAI approaches; an example could be found in
figure 3. The red sensors are the root cause of the anomaly. The
algorithms that we utilized have already shown good results
over state-of-the-art datasets and the results over real world
data are promising based on domain experts’ analysis.

V. CONCLUSION

We presented a pipeline for anomaly detection, catego-
rization, and localization over unsupervised real-world mul-
tivariate time series data from glass production. We made
a Comparison among different state-of-the-art unsupervised
anomaly detection algorithms to find the proper candidate
for the real-time scenario. A real-time anomaly indicator that
aggregates the multivariate time series data to an anomaly
score to provide early planning of repairs and measures is
conducted. Moreover, we presented a more stable approach
due to distinguishing between critical and non-critical anoma-
lies by utilizing statistical pattern recognition on anomaly
score. Furthermore, we have demonstrated anomalous sensor
localization through explainable Al.
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Fig. 4. The result of Anomaly Detection over the eight runs of glass
production data: The blue plot is aggregated anomaly score as a result of
the anomaly detection algorithm. Red areas are point anomalies, and yellow
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