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Abstract

Artificial intelligence, especially efforts based on machine learning, is rapidly transforming business op-
erations and entire industries. However, as many complex machine learning models are considered to be
black boxes, both adoption and further reliance on artificial intelligence depends on the ability to under-
stand how these automated models work – a problem known as explainable AI. We propose an approach
to explainability that leverages conceptual models. Conceptual models are commonly used to capture and
integrate domain rules and information requirements for the development of databases and other infor-
mation technology components. We propose a method to embedmachine learningmodels into conceptual
models. Specifically, we propose a Model Embedding Method (MEM), which is based on conceptual mod-
els, for increasing the explainability of machine learning models, and illustrate through an application
to publicly available mortgage data. This machine learning application predicts whether a mortgage is
approved. We show how the explainability of machine learning can be improved by embedding machine
learning models into domain knowledge from a conceptual model that represents a mental model of the
real world, instead of algorithms. Our results suggest that such domain knowledge can help address some
of the challenges of the explainability problem in AI.

Keywords: Machine learning, conceptualmodels, Artificial Intelligence,Model EmbeddingMethod (MEM),
explainability

Introduction

Machine learning consists of methods that use data and algorithms to build models that make inferences
from provided examples (McCorduck and Cfe 2004). Both the opportunities and limitations of machine
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learning are rooted in its reliance on building models from data and, therefore, on the quality of the data
used to train and test the models (Sheng et al. 2008). As our society’s dependence on machine learning
grows, it is important to ensure that machine learning models perform well, are compliant with legal and
ethical requirements, and are interpretable and transparent for different types of users. This trade-off that is
often exacerbated by opaque transformations in the input data (feature engineering) that makes it challeng-
ing to assess the effectiveness of the input data on the outcome (Thrun and Ultsch 2021). Numerous chal-
lenges persist, including biases, discrimination, lower performance, lack of transparency, and explainability
(Arrieta 2020). While popular approaches have emerged for explaining predictions of classifiers Adadi and
Berrada 2018), there are criticisms about explanations being dependent on the choice of hyperparameters
and how these models have different explanations for similar instances in the data (Probst et al. 2019).

The goal of this research is to develop aModel EmbeddingMethod (MEM) for embeddingmachine learning
models into conceptual models as a means of assessing the alignment between conceptual knowledge of
experts and data-driven knowledge. The method leverages the predictions of a machine learning model to
link features together based on the importance of the predicted features. Relationships between concepts
can be identified by projecting data features onto attributes in the conceptual model. This can be used to
evaluate which relationships of the conceptual model are supported by the machine learning model. Thus,
the conceptual model becomes an interpretive framework for machine learning models. By embedding the
machine learning model into conceptual models in this way, similarities and differences between the two
can be identified. If there is strong agreement, there is a high probability that the predictive behavior of
the machine learning model will conform to the conceptual model. If there is a low level of agreement, the
machine learning model behaves significantly differently than assumed by domain experts. This can lead to
misbehavior with unintended side and after effects (Storey et al. 2022) or may uncover novel facts about the
domain.

Machine Learning and Conceptual Modeling

The increase in the use of complex machine learning models has brought up challenges in explaining the
decision logic of thesemodels. Transparency research in AI is a growing societal concern (Adadi andBerrada
2018; Arrieta 2020). For example, constrained models and post-hoc explanation techniques can help in
building responsible AI systems (Arrieta et al. 2020). A generally overlooked approach to explainability,
however, is how to incorporate domain knowledge that a user or designer might possess. By building a
digital mental model, the mental feature provides more information that can help in the detection of fake
news (Ding et al. 2020). In our work we seek to leverage knowledge of domain experts, externalized as
conceptualmodels, to allow for detection of biases or even unintended behavior ofmachine learningmodels.
Information Systems Designers use conceptual models to express individual mental models and creation of
shared understanding.

Recent research has proposed combining conceptualmodeling with artificial intelligence or, specificallyma-
chine learning (Bork et al. 2020; Lukyanenko et al. 2019; Lukyanenko et al. 2020; Maass and Storey 2021).
Doing so can provide reliable rules about the domain without being dependent on extracting them from the
data. Despite these efforts, conceptual models are rarely used in the process of building machine learning
models or to increasemachine learningmodel transparency and interpretability. At the same time, machine
learning invariably relies on humanmentalmodels – representations of reality in theminds of data scientists
or users of machine learning models, who either develop or interpret machine learning solutions, in light
of their individual mental models. This inevitably leads to differences between the shared understanding of
the information system design team and the behavior of the machine learning model.

Feature Attribution Models

Machine learning (ML) models are globally fitted to datasets. Predicting an output features means that a
prediction shall be as close as possible to real values (ground truth) within a domain; i.e., minimizing a
loss function. Some machine learning models provide feature importance values, such as various types of
decision trees while feature importance of neural networks are notoriously fragile (Ghorbani et al. 2019).
Therefore, simpler models (surrogate models) are locally fitted ex-post to ML models. Surrogate models
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provide information on local contribution of features to outcomes (e.g., LIME or SHAP Lundberg and Lee
2017). SHAP (Shapley Additive Explanation) values are Shapley values of a conditional expectation function
of the machine learning model; i.e., the fitted model is used for determining local contribution of single
features to an outcome.

Shapley values formalize coalition games and determine additive marginal contributions of single players to
an overall payoff of the coalition of players. They are defined by an operator ϕ that assigns for each game v
a vector of payoffs ϕ(v) = (ϕ1, ..., ϕn). ϕi(v) is player i’s marginal and additive contribution to the outcome
of a game over all permutations with all other players Shapley 2016. Shapley values are locally accurate, i.e.
match the original model f(x), is not affected by missing values and are consistent wrt. unequality relation
between two models f(x) and f ′(x) (Lundberg and Lee 2017).

Model Embedding Method

Following the theory-grounded arguments for incorporating conceptual models for explainability, we ad-
vance a new method, the Model Embedding Method (MEM), motivated by the popular practice of word
embedding in Natural Language Processing (Bengio et al. 2000). MEM also benefits from imposing fea-
ture weights to the conceptual model. Superimposition is a concept suggested to graphically impose fea-
ture weights - outputs of machine learning - onto conceptual models to show which entities (concepts) the
weights belong to (Lukyanenko et al. 2020). However, this early idea did not consider how to aggregate these
weights per concept nor the contribution of the relationships among concepts to transparency. Hence, al-
though promising, Superimposition falls short of leveraging the domain semantics captured in conceptual
models, and merely placed conceptual models as backgrounds for feature weights. The analytical approach
of MEM extends prior work on inductive discovery of conceptual models by data-driven models (Maass and
Shcherbatyi 2018). Model Embedding is the first method which, driven by theoretical arguments, embeds
functional behavior ofmachine learningmodels into conceptualmodels to analyze compliance between con-
ceptual models and machine learning models. It also increases transparency and explainability of machine
learning models by conceptual models.

The proposed Model Embedding Method consists of four steps:

1. Marginal contribution: determination of attribution values for input features to output features
2. Feature Contribution: mapping local contributions of input features with associated outcome fea-

ture of corresponding attributes of a conceptual model.
3. Concept Contribution: identification of directed relationships between concepts based on feature

contributions.
4. Concept Mapping: interpretation of concept contributions in context of a conceptual model

Marginal contribution

We now use marginal contributions for defining conceptually generalized contributions of input features.
Given a conceptual model CM with a bidirectional mapping of concept attributes to all features in a dataset
O. For each feature marginal contribution for the prediction of outcome features is calculated. Here, SHAP
values are used to represent additive contributions of input features to the value of output features accord-
ing to Shapley’s model: represented by vector Φ. Marginal contributions are irrespective of association of
features to attributes and concepts; i.e., marginal contributions are determined bymachine learningmodels
independent of conceptual models.

Feature contribution

For each concept c in CM , a n-ary concept contribution vector goc is constructed by the Hadamard product
of marginal contribution vector Φ and input vector xc for an output feature o in output concept O. xc has
only feature values associated with concept c and value 0 everywhere else. Vector goC is the contribution of
all input concepts on an outcome feature o for input dataset xc.

goc = Φ ◦ xc and goC = Πc∈Cg
o
c ◦ 1n
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ḡoc is the scaledmean value for all marginal contributions in goc for input dataset x
c; i.e., relative contribution

of feature to an outcome feature. Values are min-max scaled without shifting by the mean (x/(max−min)).
This allows comparison of different feature contributions. For heterogeneous concept definitions, a domi-
nant feature is selected that is associated with the most important attribute of a concept.

Concept contribution

Attributes of conceptualmodels and features of datasets used formachine learning are natural counterparts.
By mapping data schemas of both, feature contributions are transferred as attribute contributions of con-
ceptual models. Data schema mappings can be complex (cf. Batini et al. 1986). In the following, we assume
one-to-one mappings. Concept contributions depend on the type of outcome features. Categorical outcome
attributes require classification models while cardinal attributes are predicted by regression models. Con-
cept contributions is the sum of feature contributions of all features mapped with attributes of a concept c
on outcome feature o in output concept O. Counteracting feature contributions reduce effect sizes of con-
cept contributions while aligned feature contributions increase effect sizes. We define fO(X) as the sum of
feature contributions of input concepts on feature o mapped to output concept O, excluding contributions
of features mapped to O due to implicit strong collinearity with the output feature o:

fO(X) =
∑

c∈C\{O} ḡ
o⊤
c · 1n

κO(X) calculates the mean of feature contributions of a concept c ∈ C on another concept O.

κO(X) = 1/| O | ∗
∑

o∈O fO(x)

κO is determined for permutations over all concepts c ∈ C, i.e., κO is determined for all concepts c ∈ C.
This provides a measure for local contributions of input concepts on a concept given input x.

So far, conceptual-modeling scripts (cf. Wand andWeber 2002) are designed according to syntactic, seman-
tic, and pragmatic properties (Lindland et al. 1994). It does not matter if the attributes serve as input for
the prediction of other attributes. Therefore, concepts are designed independent of predictive consistency
of attributes. For information systems that use machine learning models, conceptual models can also sup-
port the design and implementation of better machine learning models. This means that inconsistencies of
concept definitions with respect to predictions are to beminimized so that they better reflect the behavior of
intended machine learning models. A conceptual model provides higher predictive consistency if attributes
are homogeneous in predicting attributes of concepts that they are connected with by conceptual relation-
ships. This is discussed in more detail in the following.

A concept c with little concept contribution κO(X) on an output concept cp has a weak conceptual relation-
ship with cp, i.e., the outcome is only weakly affected by the presence of ci. Conceptual relationships based
on concept contributions are directed from ci to cp due to the game-theoretic construction of Shapley values.
However, κO(X) is themean value over all feature contributions. Therefore, opposing feature contributions
can single out one another. Analysis of feature contributions in the the context of an input concept is needed
for identification of such effects. Various cases can be distinguished. First, feature contributions have little
effect, i.e., the κO(X) is a sufficient proxy for feature contributions. Second, feature contributions aremainly
positive or negative. This indicates that a concept is homogeneously defined relative to an outcome concept,
i.e. the distribution of feature contributions of a concept towards an outcome concept is homogeneous. This
can be seen as support for a clear conceptual relationships between both concepts from a data analytical
perspective in addition to syntactic, semantic and pragmatic qualities (Lindland et al. 1994). In contrast, if
the distribution of feature contributions are multi-modal with negative and positive feature contributions,
this can be interpreted as weak support of conceptual relationships between both concepts. Predictive in-
consistency is a metric for misalignment between conceptual models and machine learning models.

Concept Mapping

Concept contribution abstracts from features to concepts and determines directed contributions between
directly connected concepts (cf. Game 1 Michalak et al. 2013). Additive feature attribution properties are
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Figure 1. Conceptual Model for the HMDA loan dataset

not maintained because of a lack of output values at the concept level. Therefore, concept contribution is a
score that measures directed local contribution of one concept to another derived by feature contributions.

We call the attribution of concepts by concept contributions Concept Mapping. It closes a cycle between
conceptual models, data and ML models that consists of three steps. First, conceptual models provide con-
straints on data that is considered for ML model development. Second, data is used for constructing ML
models. Concept contributions elevate patterns found by ML models to a conceptual level that is fed back
to conceptual models. Thus, concept contributions can be used for confirmation of conceptual models; i.e.,
for evaluating whether identified patterns from data are consistent with conceptual models, resulting in a
shared understanding by the actors involved.

Example

To illustrate the application of theModel EmbeddingMethod, weuse publicly available data (10GB) from the
HomeMortgageDisclosureAct (HMDA)website (https://www.consumerfinance.gov/data-research/hmda/).
This data contains the 2020mortgage application data collected in the United States under the HomeMort-
gage Disclosure Act. The dataset consists of a sample of 3,481,348 applications for single-family, principal
residence purchases, i.e. 5% of the HMDA dataset. The data is comprised of 99 variables including payment
history, credit history, creditmix, demographics, income, and characteristics of the loan (e.g., purpose of the
loan, interest rate, total loan costs), and census data (e.g., census tract, tract population). The target variable
is to predict whether a mortgage is originated (target = 1) or denied (target = 0). Of the sample applications
in the dataset, 44.3% of the applications were for refinancing, 32.42% were for home purchase, 14.96% for
cash-out refinancing. 83.56% of the applications were approved. 69.99% of the applications belonged to
White applicants and 6.15% to Black or African American applicants (approval rate for Whites was 85.33%
and Blacks was 71.51%). Figure 1 provides a fragment of the conceptual model. For comparison of concept
contributions, data needs to be standardized. Categorical features are transformed by one-hot-encoding ex-
cept output feature y. After data engineering, the dataset contains 52 features from which 20 are associated
to the concept applicant, 14 to the concept loan and 18 to the concept loan_application.

Feature Contribution

All five concepts are used for making a binary decision on loan applications; i.e. concept Decision with a
feature action_taken. We use XGBoost Classification for predicting action_taken. Performance metrics for
the model on the test dataset are: accurary (0.994), precision (0.999), recall (0.994), F-measure (0.996).

Figure 2. Example feature contributions for Loan

In Figure 2, feature contributions of input concepts Applicant and LoanApplication on Loan are presented.
For instance, incomehas a feature contribution value of−0.15onLoan and its dominant featureLoanAmount;
i.e. income is weak in predictingLoan, while property_value predicts a reducing effect and rate_spread pre-
dicts an increasing effect on Loan (cf. Figure 2).
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κc(x) Applicant LoanApplication Loan Decision
Applicant 1 0.09 0.04 -0.11
LoanApplication -0.05 1 -0.04 0.02
Loan 0.40 0.09 1 -0.18

Table 1. Concept contributions κc(x) of initial model

Concept contributions

For all three concepts, i.e., Applicant, Loan and LoanApplication, we determined feature contributions on
the concept Decision modeled by a dominant feature (ActionTaken) and three predictions between input
concepts, i.e. (1) LoanApplication and Loan on Applicant, (2)) Applicant and Loan on LoanApplication
and (3) Applicant and LoanApplication on Loan.

For each input concept (applicant, loan application, and loan), concept contributions are determined. A
strong concept contribution exists between Loan and Applicant (0.40), i.e., Loan supports conceptual rela-
tionships to Applicant (cf. Table 1). Analysis of feature contributions show that all values are negative, i.e.
pointing in the same direction. Other concept contributions to the three input concepts are rather weak.

In contrast, concept contributions of the three input concepts to Decision are consistent for Loan but not
for Applicant and LoanApplication. purchaser_type_0 and property_value are strongly negative while
the others are positive, resulting in small concept contribution values. Similar inconsistencies exist for
LoanApplication to Applicant with a strongly negative effect of loan_amount, Applicant to Loan with neg-
ative effect of income, and LoanApplication to Loan with strongly negative effect of property_value.

We use a collector pattern for integrating all attributes that lead to inconsistencies. For this, conceptContext
is created with attributes purchaser_type_0 and property_value. Concept contributions show that no in-
consistencies are present for this revised conceptualmodel with respect to predicting decision. This provides
a conceptual model that is properly aligned with the behavior of the correspondingmachine learningmodel.

Concept mapping

Merging inconsistent attributes into another concept improved concept contribution of input concepts to the
outcome concept decision (cf. Figure 3). Applicant and LoanApplication positively contribute to decision
whileLoan andContext have a negative predictive effect on decision. ConceptContext has a strong negative
predictive effect on decision due to negative feature contributions of purchaser_type_0 (-0.52). Inspection
of the HDMA data description reveals that code 0 indicates an unknown value; not a missing value. Proper
values are, for instance, Fannie Mae, Freddie Mac, private securitizer, commercial bank savings bank, or
credit union mortgage.

Concept contributions on Decision are positive for Applicant and Loan but negative for LoanApplication
and Context. Interpretability on Decisionmeans that higher attribute values for Applicant and Loan have
a positive effect onDecision while lower attribute values for LoanApplication and Context have a negative
effect. Similar interpretation is applied between input concepts. For instance, higher attribute values of
Applicant have a negative effect onLoanApplication. This can be interpreted as socio-economicmoderation
effects on loan applications. Note that Context has a strong predictive effect onDecision but alsoApplicant
and Loan. This indicates that purchaser_type_0 and property_value are leaking features, i.e., at least one
highly correlates with action_taken. Analysis shows that purchaser_type_0 correlates with Action_Taken
with -.76.

This is an example how concept contributions κp can be leveraged for automatically scrutinizing conceptual
models associated with datasets and database implementations. In this example, we found support for a
revised conceptual model with argument for a collector concept Context. The revised conceptual model
better supports predictive behavior of the underlying data set and, thus, is better aligned with the machine
learning model for predicting decision of loan applications. MEM also helped to identify leaking features
(purchaser_type_0). In summary, the revised conceptual model is means for interpretation of the machine
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Figure 3. Revised concept model with conceptual contribution values

learning model.

Conclusion and Future Research

With the Model Embedding Method, we introduce a method that derives relationships between concepts
(concept contributions) and uses this, in turn, to analyze the consistency of conceptual models. Predictive
analysis provides a novel perspective for evaluation of conceptual models extending prior approach (Wand
and Weber 2002). MEM trains several machine learning models including the model that is actually used
by the information system for prediction of a particular outcome feature. We presented an example for pre-
dicting decisions on loan approval. MEM trained additional machine learning models between all concepts
and provided insightful information on inconsistent concept definitions. This was used to revise the con-
ceptual model and provides an improved capability for predicting the outcome concept decision. Therefore,
the revised conceptual model has an improved alignment with the machine learning model and can be used
for interpretation of the machine learning behavior. This means that MEM works in both directions: (1)
embedding of machine learning models into conceptual models; and (2) embedding conceptual models into
machine learning models. This provides a novel means for explainable AI based on conceptual models.

The Model Embedding Method addresses an important challenge of machine learning explainability and
bridges conceptual model and machine learning (cf. Maass and Storey 2021). Future work is needed to
apply the method to other examples in other domains. In future studies, we plan to evaluate the increased
transparency due to the new method by conducting interviews, focus groups, and laboratory experiments
with the stakeholders seeking to understand the decision logic behind machine learning models.

To illustrate one such evaluation, consider a laboratory experiment with target decisionmakers. The context
is evaluating a trained machine learning model for screening applicants for a job. In one condition, the
participants receive an output of a regression in a form of a formula along with the list of features sorted by
predictive importance. This corresponds to a common practice in using featureweights for explainability. In
the treatment conditionwe show the formula alongwith theMEM-based conceptualmodel. The participants
would then be asked to perform activities which ascertain their level of understanding of the rules of the
machine leaning model. In addition, we will administrate a self-reported questionnaire to collect measures
of perceived model transparency and intentions to use this model in a real-world setting.

We also plan to investigate the benefit of the MEM method compared to other existing approaches to ex-
plainability, such as LIME. We suggest that MEM complements existing methods by extrapolating their
outputs onto the conceptual models.
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