

Workshop on Information Technology and Systems, Copenhagen, Denmark 2022 1

MANGQ: Towards Natural Language Interfaces

for Knowledge Graphs

Amin Harig1, Sabine Janzen1, Wolfgang Maaß1,2

{amin.harig,sabine.janzen,wolfgang.maass}@dfki.de

1Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany

2Information and Service Systems, Saarland University, Germany

Abstract

The growing number of data platforms offering large amounts of distributed, heterogeneous, but

economically relevant data is more and more designed and implemented based on knowledge

graphs (KGs). But despite the overall presence of KGs in data-driven systems and the growing

need for intuitively accessing them, natural language querying of KGs by non-technical users is

not possible. With MANGQ, we introduce a model for mapping natural language to query

language expressed in GraphQL. Focusing on Question-Answering (QA) settings, we describe a

question-to-query mapping approach that supports intuitive access of KGs. We present promising

results from a runtime experiment with a QA system implementing the proposed approach using

subsets of the CoSQL corpus and the ParaphraseBench benchmark.

Introduction

As “data are the new oil” (Economist, 2017), data platforms and marketplaces pop up offering

large amounts of distributed, heterogeneous but economically relevant data (Otto and Jarke, 2019).

Learning the application of semantic technologies from social networks, these data-driven systems

 MANGQ – Mapping Natural Language onto GraphQL

Workshop on Information Technology and Systems, Copenhagen, Denmark 2022 2

are more and more designed and implemented on top of knowledge graphs (KGs) (Narayanasamy

et al., 2022; Shinavier et al., 2019). The need for intuitively accessing these KGs by natural

language interfaces (NLIs) is growing (Li and Rafiei, 2017), but up till now technical know-how

and the ability to express queries in SPARQL or GraphQL are required to access the data. Related

work on natural language interfaces for relational databases (NLIDBs) tackles this issue by

enabling users to enter their queries in form of NL questions and mapping them into machine-

readable queries (e.g., SQL) for requesting database(s). Approaches range from (1) rule-based

semantic parsing of nested questions (Sheinin et al., 2018), and (2) sequence-to-sequence

processing using turn-level encoding with attention (Suhr et al., 2018), to (3) syntax tree networks

(Yu et al., 2018). So far, research on requesting KGs focusses on performance issues in query

optimization for well-structured large KGs, e.g., (Wang et al., 2019; Zhang et al., 2021). In our

research, we investigate natural language interfaces for knowledge graphs (NLIKGs). Focusing on

Question-Answering (QA) settings, we consider a question-to-query-mapping approach that

enables users to pose NL questions to KGs and obtain appropriate results. In this work, we propose

MANGQ - a model for mapping natural language to query language expressed in GraphQL for

intuitively requesting KGs. MANGQ uses the well-defined data schema in GraphQL and runs a

set of schema-aware modules identifying relevant components and intentions of the user question

using similarity measures. Additionally, we focus on keeping the model lightweight to ensure its

performance, robustness and applicability in web-based settings, e.g., edge computing. One

resulting appeal of the model is its applicability also to small or new KGs without already given

big data, as proposed modules operate on the schema and do not require intensive learning. By

exemplifying the model within a QA system as a NLIKG, e.g., in mobility, education and industry,

 MANGQ – Mapping Natural Language onto GraphQL

Workshop on Information Technology and Systems, Copenhagen, Denmark 2022 3

we were able to evaluate the proposed approach by means of subsets of the CoSQL corpus (Yu et

al., 2019) and the ParaphraseBench benchmark (Utama et al., 2018) in terms of correctness in

answered user questions with promising results.

Natural Language Interfaces for Knowledge Graphs

A multitude of models for mapping NL to query language has been proposed in the past. As one

main aspect of this work is the focus on portable, lightweight solutions, NLP-Reduce (Kaufmann

et al., 2007) was also designed to fulfill this task on OWL without relying on expensive NLP

techniques. It makes use of string similarity measures and a modular architecture that creates query

component candidates and rates them by their probability of correctness. The model is therefore

dependent on the user’s awareness of the requested ontology’s underlying structure. (Bast and

Haussmann, 2015) focus on an efficient mapping (to SPARQL) and employ template matching,

meaning the (recursive) insertion of identified elements into predefined query templates. Both

models are robust regarding user input as they can process sentences as well as only keywords.

Other examples of keyword-based querying of RDF entity graphs aim to efficiently map entered

keywords to entities in the graph using an entity index of RDF data (Zhang et al., 2021). They

build up an embedding space for the considered graph, in which its vertices and edges are

positioned closer to each other the more they are semantically similar. This enables more efficient

resolving of ambiguities in the NL question and precise identification of the relevant structures in

the graph. (Utama et al., 2018) propose a deep learning-powered model for NL database requests

based on neural query translation of the user questions to SQL statements. The SyntaxSQLNet

model (Yu et al., 2018) is based on modules deriving specific elements of SQL statements out of

user questions using an encoding of targeted data structures (table-aware column representation).

 MANGQ – Mapping Natural Language onto GraphQL

Workshop on Information Technology and Systems, Copenhagen, Denmark 2022 4

The modules generate SQL tokens (e.g., AND, < or a column name) that compose a syntax tree

applied for recursively building up the target SQL query.

Model for Mapping Natural Language onto GraphQL

We present MANGQ, a model for mapping natural language questions to GraphQL queries

consisting of three main modules following the mentioned SyntaxSQLNet (Yu et al., 2018) (cf.

Figure 1): Tokenizer, Parsing Engine and Query Builder. MANGQ operates on tokens obtained

from user questions by the Tokenizer and on the KG’s data schema, both serving as input for the

Parsing Engine. It consists of several modules charged with executing the mapping task, obtained

by applying string similarity measures (i.e., Jaro-Winkler) on all pairs of input tokens and KG

elements. Outputs of these modules are identified target structures of the graph, e.g., type and field

names, as well as required information for GraphQL query generation, e.g., whether an

aggregation shall be performed. Outputs are finally passed to the Query Builder. This component

applies a multitude of pre-defined query templates, selects the most appropriate template based on

the parsing engine's results and inserts corresponding elements accordingly (cf. Figure 1). This

pipeline is based on low complexity procedures to ensure fast computation and high usability even

in limited environments, e.g., edge computing.

For introducing the proposed approach, we will give a short example course of mapping NL onto

GraphQL starting with user question and ending with GraphQL query. We apply MANGQ on a

domain-specific KG extracted from the CoSQL corpus (Yu et al., 2019), consisting of pilots,

aircrafts and airports related to an airline, and their relations. For the following, imagine the user

poses the question: "Show me name and age of all our pilots".

 MANGQ – Mapping Natural Language onto GraphQL

Workshop on Information Technology and Systems, Copenhagen, Denmark 2022 5

Decomposition of natural language input: The Tokenizer receives the user question in form of

a raw string as input (cf. Figure 1, step 1). Tokenization consists of cleaning input by removing

any punctuation marks and dividing it on blank spaces. The decomposed entry represents its output

as a set of single-word tokens, e.g., [show, me, ..., pilots] (cf. Figure 1, step 2).

Figure 1. Model for Mapping Natural Language onto GraphQL (MANGQ)

Key component detection: The Type Detection module of the Parsing Engine processes the

similarity of tokens and types specified by the schema (cf. Figure 1, step 3). The token-type-pair

consisting of 'pilots' and the type Pilot has a Jaro-Winkler distance of 0.97, representing the

highest similarity value for this token, thus leading to its selection. Other modules of the Parsing

Engine are called sequentially and perform similar operations, e.g., the Field Detection module

uses a similarity threshold to identify all fields mentioned in the user question. In the example,

name and age are identified due to their similarity of 1.0 with tokens. Some of the other modules

are the Aggregation Function Detection or the Entity Instance Detection.

Query generation: Finally, the Query Builder receives the list of identified elements (cf. Figure

1, step 5). Depending on the input and the user intention, it selects a template of the pool of

 MANGQ – Mapping Natural Language onto GraphQL

Workshop on Information Technology and Systems, Copenhagen, Denmark 2022 6

GraphQL query templates appropriate for the given user question (cf. Bast and Haussmann, 2015).

The resulting GraphQL query {Pilots {name, age}} can then be sent to a GraphQL-

powered server to obtain the data required to answer the user question.

Implementation and Evaluation

Based on the proposed model (cf. Figure 1), we implemented a text-based QA system in form of

a NLIKG, e.g., in mobility, education and industry. To be able to process the obtained queries and

display the results to the user, a server-client architecture has been deployed using Apollo Server

for JavaScript. On client side, the interface has been implemented as a command-line based

Node.js module that accepts a user question in form of plain text. Additionally, a GraphQL server

was set up with the example KG(s) loaded. The resulting query is displayed to the user, sent to the

server and the received JSON string is passed back to the user as an answer. A prerequisite for the

QA system is the availability of data in GraphQL format including schema and resolver functions.

To evaluate our approach, we conducted two runtime studies with the implemented NLIKG

prototype. Goal of these studies was to assess the performance in answered user questions. For

that purpose and due to the lack of GraphQL-specific benchmarks, we selected and adapted two

SQL benchmarks: the CoSQL challenge (Yu et al., 2019, reduced to a randomly selected subset

due to its size) and the ParaphraseBench benchmark (Utama et al., 2018), which is composed of

linguistic variations of initial, naïve user questions. The sets both target NLIDBs and consist of

212 and 399 question-query pairs covering a total range of 7 databases with a wide spread of

domains, e.g., mobility, education, industry, health care. Those were remodeled as GraphQL-

compatible KGs of similar structure, including the corresponding data.

 MANGQ – Mapping Natural Language onto GraphQL

Workshop on Information Technology and Systems, Copenhagen, Denmark 2022 7

Results

Model Application Scope Correctness

Seq2Seq (Suhr et al., 2018) Text-to-SQL 13.9%

SyntaxSQL (Yu et al., 2018) Text-to-SQL 14.1%

MANGQ Text-to-GraphQL 29.0%

PICARD (Scholak et al., 2021) Text-to-SQL 54.6%

Table 1. Correctness in comparison with models of the CoSQL challenge (Yu et al., 2019)

In summary, 212 user questions of the CoSQL corpus were selected for the experiment. 20

questions have been identified as duplicates, 28 as follow-up questions that are out of the functional

scope of MANGQ and 2 questions referred to SQL-specific tasks (i.e., table operations), resulting

in N1=162 user questions considered for analysis. For evaluation on the ParaphraseBench

benchmark, we exclusively considered questions lying within the scope of MANGQ. This

excludes requests requiring grouping of instances as well as compound conditions over multiple

fields. This led to a set of N2=138 questions considered for analysis. The QA system was able to

perfectly answer 29.01% of the CoSQL user questions. Additionally, 17.3% were answered

partially, means answers included more information than requested. The model’s performance in

answering straightforward questions was quite good (correctness of 72.5%) whereas correctness

in processing questions requiring conditional filtering of data or aggregational operations was

lower (17 and 12%). On ParaphraseBench, our model was able to fully answer 55.8% of the

questions. Its performance in answering the original naïve questions was very good (correctness

of 89.5%), while correctness in the different paraphrased question sets exhibits a large variation

from 30% (semantic paraphrases with synonyms) to 84.2% (syntactic paraphrases). While baseline

models were outperformed in both benchmarks, the gap to the stronger performing models may be

 MANGQ – Mapping Natural Language onto GraphQL

Workshop on Information Technology and Systems, Copenhagen, Denmark 2022 8

explained through the different depths in complexity, as MANGQ focuses on portability and does

not make use of computationally intensive NLP techniques. Yet, comparison results with other

models must be viewed with caution as we only evaluated on subsets of the original corpora (due

to high effort of recreating the content in GraphQL and logical limitations of our model) and in a

different query language. Overall, this indicates a positive evaluation of the QA system regarding

its ability to map NL to GraphQL. Next steps will be to extend the model with respect to handling

numerical conditions (e.g., “list all branches with a staff size below 24”), grouping by multiple

variables (complex views) and handling of synonyms.

Model Application Scope Correctness

NaLIR (w/o feedback) Text-to-SQL 5.5%

NSP (template only) Text-to-SQL 10.6%

MANGQ Text-to-GraphQL 55.8%

DBPal (Utama et al., 2018) Text-to-SQL 75.9%

Table 2. Correctness in comparison with models of the ParaphraseBench (Utama et al., 2018)

Conclusion and Future Work

We considered natural language interfaces for knowledge graphs (NLIKGs). Despite the overall

presence of knowledge graphs (KGs) in data-driven systems and the growing need for intuitively

accessing these KGs, natural language querying of KGs by non-technical users is not possible.

Focusing on Question-Answering (QA) settings, we introduced MANGQ, a model for mapping

natural language to query language expressed in GraphQL for intuitively requesting KGs. The

model was exemplified within a QA system as a NLIKG, e.g., in mobility, retailing, education,

industry. We presented results from a runtime experiment with the QA system using subsets of the

 MANGQ – Mapping Natural Language onto GraphQL

Workshop on Information Technology and Systems, Copenhagen, Denmark 2022 9

CoSQL corpus (Yu et al., 2019) and the ParaphraseBench benchmark (Utama et al., 2018). Results

indicate a positive evaluation of the system’s performance in mapping natural language questions

to GraphQL and generating appropriate answers in JSON format, while the goal of developing a

portable and lightweight solution to the problem also has been achieved.

Acknowledgements

This work was partially funded by the German Federal Ministry of Economics and Climate Protection

(BMWK) under the contract 01MK20015A.

References

Bast, H., & Haussmann, E. (2015). More accurate question answering on freebase. Proc. of the

24th ACM Int. Conf. on Information and Knowledge Management, 1431–1440.

Economist (2017). The world’s most valuable resource is no longer oil, but data. The Economist.

Kaufmann, E., Bernstein, A., & Fischer, L. (2007). NLP-reduce: A naive but domain-independent

natural language interface for querying ontologies. 4th European Semantic Web Conf., 1–2.

Li, Y., & Rafiei, D. (2017). Natural language data management and interfaces: Recent

development and open challenges. Proc. of the 2017 ACM Int. Conf. on Management of Data,

1765–1770.

Narayanasamy, S. K., Srinivasan, K., Hu, Y.-C., Masilamani, S. K., & Huang, K.-Y. (2022). A

contemporary review on utilizing semantic web technologies in healthcare, virtual

communities, and ontology-based information processing systems. Electronics, 11(3), 453.

Otto, B., & Jarke, M. (2019). Designing a multi-sided data platform: Findings from the

International data spaces case. Electronic Markets, 29(4), 561–580.

 MANGQ – Mapping Natural Language onto GraphQL

Workshop on Information Technology and Systems, Copenhagen, Denmark 2022 10

Scholak, T., Schucher, N., & Bahdanau, D. (2021). PICARD: Parsing incrementally for

constrained auto-regressive decoding from language models. Proc. of the 2021 Conf. on

Empirical Methods in Natural Language Processing, 9895–9901.

Sheinin, V., Khorashani, E., Yeo, H., Xu, K., Vo, N. P. A., & Popescu, O. (2018). Quest: A natural

language interface to relational databases. (LREC 2018).

Shinavier, J., Branson, K., Zhang, W., Dastgheib, S., Gao, Y., Arsintescu, B., Özcan, F., & Meij,

E. (2019). Panel: Knowledge graph industry applications. Companion Proc. of the 2019 WWW

Conf., 676–676.

Suhr, A., Iyer, S., & Artzi, Y. (2018). Learning to map context-dependent sentences to executable

formal queries. Proc. of the 2018 Conf. of the NAACL: Human Language Technologies,

Volume 1, 1.

Utama, P., Weir, N., Basik, F., Binnig, C., Cetintemel, U., Hättasch, B., Ilkhechi, A., Ramaswamy,

S., & Usta, A. (2018). An end-to-end neural natural language interface for databases.

Yu, T., Yasunaga, M., Yang, K., Zhang, R., Wang, D., Li, Z., & Radev, D. (2018). SyntaxSQLnet:

Syntax tree networks for complex and cross-domain Text-to-SQL task. Proc. of the 2018 Conf.

on Empirical Methods in Natural Language Processing, 1653–1663.

Yu, T., Zhang, R., Er, H., Li, S., Xue, E., Pang, B., Lin, X. V., Tan, Y. C., Shi, T., Li, Z., et al.

(2019). CoSQL: A conversational Text-to-SQL challenge towards cross-domain natural

language interfaces to databases. EMNLP/IJCNLP (1).

Zhang, H., Dong, B., Feng, B., & Wei, B. (2021). A keyword query approach based on community

structure of RDF entity graph. 2021 IEEE 45th Annual Computers, Software, and Applications

Conf., 1143–1148.

