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Abstract 

The growing number of data platforms offering large amounts of distributed, heterogeneous, but 

economically relevant data is more and more designed and implemented based on knowledge 

graphs (KGs). But despite the overall presence of KGs in data-driven systems and the growing 

need for intuitively accessing them, natural language querying of KGs by non-technical users is 

not possible. With MANGQ, we introduce a model for mapping natural language to query 

language expressed in GraphQL. Focusing on Question-Answering (QA) settings, we describe a 

question-to-query mapping approach that supports intuitive access of KGs. We present promising 

results from a runtime experiment with a QA system implementing the proposed approach using 

subsets of the CoSQL corpus and the ParaphraseBench benchmark. 

Introduction 

As “data are the new oil” (Economist, 2017), data platforms and marketplaces pop up offering 

large amounts of distributed, heterogeneous but economically relevant data (Otto and Jarke, 2019). 

Learning the application of semantic technologies from social networks, these data-driven systems 
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are more and more designed and implemented on top of knowledge graphs (KGs) (Narayanasamy 

et al., 2022; Shinavier et al., 2019). The need for intuitively accessing these KGs by natural 

language interfaces (NLIs) is growing (Li and Rafiei, 2017), but up till now technical know-how 

and the ability to express queries in SPARQL or GraphQL are required to access the data. Related 

work on natural language interfaces for relational databases (NLIDBs) tackles this issue by 

enabling users to enter their queries in form of NL questions and mapping them into machine-

readable queries (e.g., SQL) for requesting database(s). Approaches range from (1) rule-based 

semantic parsing of nested questions (Sheinin et al., 2018), and (2) sequence-to-sequence 

processing using turn-level encoding with attention (Suhr et al., 2018), to (3) syntax tree networks 

(Yu et al., 2018). So far, research on requesting KGs focusses on performance issues in query 

optimization for well-structured large KGs, e.g., (Wang et al., 2019; Zhang et al., 2021). In our 

research, we investigate natural language interfaces for knowledge graphs (NLIKGs). Focusing on 

Question-Answering (QA) settings, we consider a question-to-query-mapping approach that 

enables users to pose NL questions to KGs and obtain appropriate results. In this work, we propose 

MANGQ - a model for mapping natural language to query language expressed in GraphQL for 

intuitively requesting KGs. MANGQ uses the well-defined data schema in GraphQL and runs a 

set of schema-aware modules identifying relevant components and intentions of the user question 

using similarity measures. Additionally, we focus on keeping the model lightweight to ensure its 

performance, robustness and applicability in web-based settings, e.g., edge computing. One 

resulting appeal of the model is its applicability also to small or new KGs without already given 

big data, as proposed modules operate on the schema and do not require intensive learning. By 

exemplifying the model within a QA system as a NLIKG, e.g., in mobility, education and industry, 
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we were able to evaluate the proposed approach by means of subsets of the CoSQL corpus (Yu et 

al., 2019) and the ParaphraseBench benchmark (Utama et al., 2018) in terms of correctness in 

answered user questions with promising results. 

Natural Language Interfaces for Knowledge Graphs 

A multitude of models for mapping NL to query language has been proposed in the past. As one 

main aspect of this work is the focus on portable, lightweight solutions, NLP-Reduce (Kaufmann 

et al., 2007) was also designed to fulfill this task on OWL without relying on expensive NLP 

techniques. It makes use of string similarity measures and a modular architecture that creates query 

component candidates and rates them by their probability of correctness. The model is therefore 

dependent on the user’s awareness of the requested ontology’s underlying structure. (Bast and 

Haussmann, 2015) focus on an efficient mapping (to SPARQL) and employ template matching, 

meaning the (recursive) insertion of identified elements into predefined query templates. Both 

models are robust regarding user input as they can process sentences as well as only keywords. 

Other examples of keyword-based querying of RDF entity graphs aim to efficiently map entered 

keywords to entities in the graph using an entity index of RDF data (Zhang et al., 2021). They 

build up an embedding space for the considered graph, in which its vertices and edges are 

positioned closer to each other the more they are semantically similar. This enables more efficient 

resolving of ambiguities in the NL question and precise identification of the relevant structures in 

the graph. (Utama et al., 2018) propose a deep learning-powered model for NL database requests 

based on neural query translation of the user questions to SQL statements. The SyntaxSQLNet 

model (Yu et al., 2018) is based on modules deriving specific elements of SQL statements out of 

user questions using an encoding of targeted data structures (table-aware column representation). 
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The modules generate SQL tokens (e.g., AND, < or a column name) that compose a syntax tree 

applied for recursively building up the target SQL query. 

Model for Mapping Natural Language onto GraphQL 

We present MANGQ, a model for mapping natural language questions to GraphQL queries 

consisting of three main modules following the mentioned SyntaxSQLNet (Yu et al., 2018) (cf. 

Figure 1): Tokenizer, Parsing Engine and Query Builder. MANGQ operates on tokens obtained 

from user questions by the Tokenizer and on the KG’s data schema, both serving as input for the 

Parsing Engine. It consists of several modules charged with executing the mapping task, obtained 

by applying string similarity measures (i.e., Jaro-Winkler) on all pairs of input tokens and KG 

elements. Outputs of these modules are identified target structures of the graph, e.g., type and field 

names, as well as required information for GraphQL query generation, e.g., whether an 

aggregation shall be performed. Outputs are finally passed to the Query Builder. This component 

applies a multitude of pre-defined query templates, selects the most appropriate template based on 

the parsing engine's results and inserts corresponding elements accordingly (cf. Figure 1). This 

pipeline is based on low complexity procedures to ensure fast computation and high usability even 

in limited environments, e.g., edge computing.  

For introducing the proposed approach, we will give a short example course of mapping NL onto 

GraphQL starting with user question and ending with GraphQL query. We apply MANGQ on a 

domain-specific KG extracted from the CoSQL corpus (Yu et al., 2019), consisting of pilots, 

aircrafts and airports related to an airline, and their relations. For the following, imagine the user 

poses the question: "Show me name and age of all our pilots". 
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Decomposition of natural language input: The Tokenizer receives the user question in form of 

a raw string as input (cf. Figure 1, step 1). Tokenization consists of cleaning input by removing 

any punctuation marks and dividing it on blank spaces. The decomposed entry represents its output 

as a set of single-word tokens, e.g., [show, me, ..., pilots] (cf. Figure 1, step 2). 

 

Figure 1.  Model for Mapping Natural Language onto GraphQL (MANGQ) 

 

Key component detection: The Type Detection module of the Parsing Engine processes the 

similarity of tokens and types specified by the schema (cf. Figure 1, step 3). The token-type-pair 

consisting of 'pilots' and the type Pilot has a Jaro-Winkler distance of 0.97, representing the 

highest similarity value for this token, thus leading to its selection. Other modules of the Parsing 

Engine are called sequentially and perform similar operations, e.g., the Field Detection module 

uses a similarity threshold to identify all fields mentioned in the user question. In the example, 

name and age are identified due to their similarity of 1.0 with tokens. Some of the other modules 

are the Aggregation Function Detection or the Entity Instance Detection. 

Query generation: Finally, the Query Builder receives the list of identified elements (cf. Figure 

1, step 5). Depending on the input and the user intention, it selects a template of the pool of 
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GraphQL query templates appropriate for the given user question (cf. Bast and Haussmann, 2015). 

The resulting GraphQL query {Pilots {name, age}} can then be sent to a GraphQL-

powered server to obtain the data required to answer the user question. 

Implementation and Evaluation 

Based on the proposed model (cf. Figure 1), we implemented a text-based QA system in form of 

a NLIKG, e.g., in mobility, education and industry. To be able to process the obtained queries and 

display the results to the user, a server-client architecture has been deployed using Apollo Server 

for JavaScript. On client side, the interface has been implemented as a command-line based 

Node.js module that accepts a user question in form of plain text. Additionally, a GraphQL server 

was set up with the example KG(s) loaded. The resulting query is displayed to the user, sent to the 

server and the received JSON string is passed back to the user as an answer. A prerequisite for the 

QA system is the availability of data in GraphQL format including schema and resolver functions. 

To evaluate our approach, we conducted two runtime studies with the implemented NLIKG 

prototype. Goal of these studies was to assess the performance in answered user questions. For 

that purpose and due to the lack of GraphQL-specific benchmarks, we selected and adapted two 

SQL benchmarks: the CoSQL challenge (Yu et al., 2019, reduced to a randomly selected subset 

due to its size) and the ParaphraseBench benchmark (Utama et al., 2018), which is composed of 

linguistic variations of initial, naïve user questions. The sets both target NLIDBs and consist of 

212 and 399 question-query pairs covering a total range of 7 databases with a wide spread of 

domains, e.g., mobility, education, industry, health care. Those were remodeled as GraphQL-

compatible KGs of similar structure, including the corresponding data. 
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Results 

Model Application Scope Correctness 

Seq2Seq (Suhr et al., 2018) Text-to-SQL 13.9% 

SyntaxSQL (Yu et al., 2018) Text-to-SQL 14.1% 

MANGQ Text-to-GraphQL 29.0% 

PICARD (Scholak et al., 2021) Text-to-SQL 54.6% 

Table 1. Correctness in comparison with models of the CoSQL challenge (Yu et al., 2019) 

In summary, 212 user questions of the CoSQL corpus were selected for the experiment. 20 

questions have been identified as duplicates, 28 as follow-up questions that are out of the functional 

scope of MANGQ and 2 questions referred to SQL-specific tasks (i.e., table operations), resulting 

in N1=162 user questions considered for analysis. For evaluation on the ParaphraseBench 

benchmark, we exclusively considered questions lying within the scope of MANGQ. This 

excludes requests requiring grouping of instances as well as compound conditions over multiple 

fields. This led to a set of N2=138 questions considered for analysis. The QA system was able to 

perfectly answer 29.01% of the CoSQL user questions. Additionally, 17.3% were answered 

partially, means answers included more information than requested. The model’s performance in 

answering straightforward questions was quite good (correctness of 72.5%) whereas correctness 

in processing questions requiring conditional filtering of data or aggregational operations was 

lower (17 and 12%). On ParaphraseBench, our model was able to fully answer 55.8% of the 

questions. Its performance in answering the original naïve questions was very good (correctness 

of 89.5%), while correctness in the different paraphrased question sets exhibits a large variation 

from 30% (semantic paraphrases with synonyms) to 84.2% (syntactic paraphrases). While baseline 

models were outperformed in both benchmarks, the gap to the stronger performing models may be 
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explained through the different depths in complexity, as MANGQ focuses on portability and does 

not make use of computationally intensive NLP techniques. Yet, comparison results with other 

models must be viewed with caution as we only evaluated on subsets of the original corpora (due 

to high effort of recreating the content in GraphQL and logical limitations of our model) and in a 

different query language. Overall, this indicates a positive evaluation of the QA system regarding 

its ability to map NL to GraphQL. Next steps will be to extend the model with respect to handling 

numerical conditions (e.g., “list all branches with a staff size below 24”), grouping by multiple 

variables (complex views) and handling of synonyms. 

Model Application Scope Correctness 

NaLIR (w/o feedback) Text-to-SQL 5.5% 

NSP (template only) Text-to-SQL 10.6% 

MANGQ Text-to-GraphQL 55.8% 

DBPal (Utama et al., 2018) Text-to-SQL 75.9% 

Table 2. Correctness in comparison with models of the ParaphraseBench (Utama et al., 2018) 

Conclusion and Future Work 

We considered natural language interfaces for knowledge graphs (NLIKGs). Despite the overall 

presence of knowledge graphs (KGs) in data-driven systems and the growing need for intuitively 

accessing these KGs, natural language querying of KGs by non-technical users is not possible. 

Focusing on Question-Answering (QA) settings, we introduced MANGQ, a model for mapping 

natural language to query language expressed in GraphQL for intuitively requesting KGs. The 

model was exemplified within a QA system as a NLIKG, e.g., in mobility, retailing, education, 

industry. We presented results from a runtime experiment with the QA system using subsets of the 
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CoSQL corpus (Yu et al., 2019) and the ParaphraseBench benchmark (Utama et al., 2018). Results 

indicate a positive evaluation of the system’s performance in mapping natural language questions 

to GraphQL and generating appropriate answers in JSON format, while the goal of developing a 

portable and lightweight solution to the problem also has been achieved. 
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